We implement a collection of techniques for estimating covariance matrices. Covariance matrices can be built using missing data. Stambaugh Estimation and FMMC methods can be used to construct such matrices. Covariance matrices can be built by denoising or shrinking the eigenvalues of a sample covariance matrix. Such techniques work by exploiting the tools in Random Matrix Theory to analyse the distribution of eigenvalues. Covariance matrices can also be built assuming that data has many underlying regimes. Each regime is allowed to follow a Dynamic Conditional Correlation model. Robust covariance matrices can be constructed by multivariate cleaning and smoothing of noisy data.
Package details 


Author  Rohit Arora 
Date of publication  20150928 18:46:22 
Maintainer  Rohit Arora <emailrohitarora@gmail.com> 
License  Artistic2.0 
Version  1.0 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.