knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
This vignette is adapted from the official Armadillo documentation.
The abs()
function computes the absolute value of each element in a vector,
matrix, or cube.
Usage:
Y = abs(X); // for non-complex X real_object_type Y = abs(X); // for complex X
For the non-complex case, X
and Y
must have the same type, such as mat or
cube.
For the complex case, Y
must be the real counterpart to the type of X
. If
X
has the type cx_mat
, then the type of Y
must be mat
.
[[cpp11::register]] doubles_matrix<> abs1_(const int& n) { mat A(n, n, fill::randu); mat B = abs(A); cx_mat X(n, n, fill::randu); mat Y = abs(X); mat res = B + Y; return as_doubles_matrix(res); }
The accu()
function computes the sum of all elements in a vector, matrix, or
cube.
[[cpp11::register]] double accu1_(const int& n) { mat A(n, n, fill::randu); mat B(n, n, fill::randu); double x = accu(A); // accu(A % B) is a "multiply-and-accumulate" operation // as operator % performs element-wise multiplication double y = accu(A % B); return (x + y); }
The affmul()
function computes matrix multiplication for A
and B
with an
extended form of B
. A
is typically an affine transformation matrix. B
can
be a vector or matrix, and is treated as having an additional row of ones.
The number of columns in A
must be equal to number of rows in the extended
form of B
(e.g., A.n_cols = B.n_rows + 1
).
If A
has dimensions 3x3 and B
2x1, the equivalent matrix multiplication is:
⎡ C0 ⎤ ⎡ A00 A01 A02 ⎤ ⎡ B0 ⎤ ⎢ C1 ⎥ = ⎢ A10 A11 A12 ⎥ x ⎢ B1 ⎥ ⎣ C2 ⎦ ⎣ A20 A21 A22 ⎦ ⎣ 1 ⎦
If A
has dimensions 2x3 and B
2x1, the equivalent matrix multiplication is:
⎡ C0 ⎤ ⎡ A00 A01 A02 ⎤ ⎡ B0 ⎤ ⎢ C1 ⎥ = ⎢ A10 A11 A12 ⎥ x ⎢ B1 ⎥ ⎣ 1 ⎦
[[cpp11::register]] doubles affmul1_(const int& n) { mat A(n, n + 1, fill::randu); vec B(n, fill::randu); vec C = affmul(A, B); return as_doubles(C); }
The all()
function checks whether all elements in a vector, matrix or cube
are non-zero, or satisfy a relational condition. It returns true/false booleans
for vectors and 0/1 vectors for matrices to indicate if the condition is met
for each row or column.
Usage:
all(vector); all(matrix); all(matrix, dimension); // dimension = 0 -> returns a row vector urowvec/umat // dimension = 1 -> returns a column vector ucolvec/umat
[[cpp11::register]] logicals all1_(const int& n) { vec V(n, fill::randu); mat X(n, n, fill::randu); // true if vector V has all non-zero elements bool status1 = all(V); // true if vector V has all elements greater than 0.5 bool status2 = all(V > 0.5); // true if matrix X has all elements greater than 0.6; // note the use of vectorise() bool status3 = all(vectorise(X) > 0.6); // row vector indicating which columns of X have all elements greater than 0.7 umat A = all(X > 0.7); writable::logicals res(4); res[0] = status1; res[1] = status2; res[2] = status3; res[3] = all(vectorise(A) == 1); // true if all elements of A are 1 return res; }
The any()
function checks whether any element in a vector, matrix or cube is
non-zero, or satisfies a relational condition. It returns true/false booleans
for vectors and 0/1 vectors for matrices to indicate if the condition is met
for any row or column.
Usage:
any(vector); any(matrix); any(matrix, dimension); // dimension = 0 -> returns a row vector urowvec/umat // dimension = 1 -> returns a column vector ucolvec/umat
[[cpp11::register]] logicals any1_(const int& n) { vec V(n, fill::randu); mat X(n, n, fill::randu); // true if vector V has any non-zero elements bool status1 = any(V); // true if vector V has any elements greater than 0.5 bool status2 = any(V > 0.5); // true if matrix X has any elements greater than 0.6; // note the use of vectorise() bool status3 = any(vectorise(X) > 0.6); // row vector indicating which columns of X have any elements greater than 0.7 umat A = any(X > 0.7); writable::logicals res(4); res[0] = status1; res[1] = status2; res[2] = status3; res[3] = any(vectorise(A) == 1); // true if any element of A is 1 return res; }
The approx_equal()
function checks whether two vectors, matrices or cubes are
approximately equal. It returns true if all corresponding elements have
differences less than or equal to a given tolerance.
Usage:
approx_equal(A, B, method, tol) approx_equal(A, B, method, abs_tol, rel_tol)
The method
parameter specifies the method used to compare the elements:
method = "absdiff"
: absolute difference (e.g., |A - B| <= tol
)method = "reldiff"
: relative difference (e.g., |A - B| / max(|A|, |B|) <= tol
)method = "both"
: absolute or relative difference (e.g., |A - B| <= tol || |A - B| / max(|A|, |B|) <= tol
)[[cpp11::register]] bool approx_equal1_(const int& n) { mat A(n, n, fill::randu); mat B = A + 0.001; bool same1 = approx_equal(A, B, "absdiff", 0.002); mat C = 1000 * randu<mat>(n, n); mat D = C + 1; bool same2 = approx_equal(C, D, "reldiff", 0.1); bool same3 = approx_equal(C, D, "both", 2, 0.1); bool all_same = same1 && same2 && same3; return all_same; }
The arg()
function computes the phase angle of each element in a vector,
matrix or cube. For non-complex elements, the input is treated as a complex
element with zero imaginary component. For complex elements, the input must be
of the same and the output the real counterpart type.
Usage:
real_object_type Y = arg(X);
[[cpp11::register]] doubles_matrix<> arg1_(const int& n) { cx_mat X(n, n, fill::randu); mat Y = arg(X); return as_doubles_matrix(Y); }
The as_scalar()
function converts a 1x1 matrix to a scalar (e.g.,
double/int
). It is useful when you want to extract a single element from a
matrix or an operation (e.g., converting the result of a dot/inner product to a
scalar).
[[cpp11::register]] double as_scalar1_(const int& n) { rowvec r(n, fill::randu); colvec q(n, fill::randu); mat X(n, n, fill::randu); // examples of expressions which have optimised implementations double a = as_scalar(r*q); double b = as_scalar(r*X*q); double c = as_scalar(r*diagmat(X)*q); double d = as_scalar(r*inv(diagmat(X))*q); return (a + b + c + d); }
The clamp()
function clamps each element in a vector, matrix or cube to a
given range. Any value less than the lower limit is set to the lower limit, and
any value greater than the upper limit is set to the upper limit.
For objects with complex elements, the real and imaginary components are clamped separately.
If the input is a sparse matrix, only the non-zero elements are clamped.
[[cpp11::register]] doubles_matrix<> clamp1_(const int& n) { mat A(n, n, fill::randu); mat B = clamp(A, 0.2, 0.8); mat C = clamp(A, A.min(), 0.8); mat D = clamp(A, 0.2, A.max()); mat res = B + C + D; return as_doubles_matrix(res); }
The cond()
function computes the condition number of a matrix. The condition
number is the ratio of the largest singular value to the smallest singular
value. It is a measure of how well the matrix can be inverted, a matrix with a
value close to 1 is well-conditioned, and a matrix with a large value is
ill-conditioned. The computation is based on the singular value decomposition.
[[cpp11::register]] double cond1_(const int& n) { mat A(n, n); A.eye(); // the identity matrix has a condition number of 1 double cond_num = cond(A); return cond_num; }
Calculating the approximate reciprocal condition number via rcond()
is
considerably more efficient.
The conj()
function computes the complex conjugate of each element in a
complex matrix or cube.
[[cpp11::register]] list conj1_(const int& n) { cx_mat X(n, n, fill::randu); cx_mat Y = conj(X); return as_complex_matrix(Y); }
The conv_to()
function converts a matrix or cube to a different type. It can
convert mat
to imat
, cube
to icube
, mat
into colvec
or any other
casting that preserves data (e.g., a matrix that cannot be interpreted as a
vector is not a valid casting). It can also be used to convert a matrix/vector
into a std::vector
object.
Usage:
conv_to<type>::from(X)
[[cpp11::register]] doubles conv_to1_(const int& n) { mat A(n, n, fill::randu); fmat B = conv_to<fmat>::from(A); std::vector<double> x(B.n_elem); int i, N = static_cast<int>(B.n_elem); for (i = 0; i < N; ++i) { x[i] = B(i); } colvec y = conv_to<colvec>::from(x); std::vector<double> z = conv_to<std::vector<double>>::from(y); return as_doubles(z); }
To convert an expression that results in a 1x1 matrix to a pure scalar value,
use as_scalar()
.
The cross()
function computes the cross product of two vectors under the
assumption that the vectors are three-dimensional.
[[cpp11::register]] doubles cross1_(const int& n) { vec A(n, fill::randu); vec B(n, fill::randu); vec C = cross(A, B); return as_doubles(C); }
The cumsum()
function computes the cumulative sum of elements in a vector or
matrix. For a vector, it returns a vector of the same orientation. For a matrix,
it returns a matrix with the cumulative sum along the specified dimension (the
default is along columns with dimension = 0
).
Usage:
cumsum(vector); cumsum(matrix, dimension); // dimension = 0 -> cumulative sum along columns // dimension = 1 -> cumulative sum along rows
[[cpp11::register]] doubles cumsum1_(const int& n) { mat A(n, n, fill::randu); mat B = cumsum(A); mat C = cumsum(A, 1); vec x(n, fill::randu); vec y = cumsum(x); writable::doubles res(3); res[0] = accu(B); res[1] = accu(C); res[2] = accu(y); return res; }
The cumprod()
function computes the cumulative product of elements in a vector
or matrix. For a vector, it returns a vector of the same orientation. For a
matrix, it returns a matrix with the cumulative product along the specified
dimension (the default is along columns with dimension = 0
).
Usage:
cumprod(vector); cumprod(matrix, dimension); // dimension = 0 -> cumulative prod along columns // dimension = 1 -> cumulative prod along rows
[[cpp11::register]] doubles cumprod1_(const int& n) { mat A(n, n, fill::randu); mat B = cumprod(A); mat C = cumprod(A, 1); vec x(n, fill::randu); vec y = cumprod(x); writable::doubles res(3); res[0] = accu(B); res[1] = accu(C); res[2] = accu(y); return res; }
The det()
function computes the determinant of a square matrix. It is based
on the LU decomposition. If the input is a not a square matrix, the function
throws a std::runtime_error
exception.
Usage:
val = det(X); // store a scalar det(val, A); // store the determinant in val and return true if successful
If the calculation fails:
val = det(A)
throws a std::runtime_error
exceptiondet(val,A)
returns a bool set to false (exception is not thrown)[[cpp11::register]] doubles det1_(const int& n) { mat A(n, n, fill::randu); double val1 = det(A); double val2; mat B(n, n, fill::randu); bool success2 = det(val2, B); return writable::doubles({val1, val2, static_cast<double>(success2)}); }
The diagmat()
function generates a diagonal matrix from a given vector or
matrix. If the input is a vector, the output is a square matrix with the vector
as the diagonal. If the input is a matrix, the output is a square matrix with
the diagonal elements from the input matrix. Any element outside the diagonal
is set to zero. The default is the main diagonal (k = 0
).
Usage:
diagmat(vector); diagmat(matrix); diagmat(matrix, k); // k = 0 -> main diagonal // k > 0 -> above main diagonal // k < 0 -> below main diagonal
[[cpp11::register]] doubles_matrix<> diagmat1_(const int& n) { mat A(n, n, fill::randu); mat B = diagmat(A); mat C = diagmat(A, 1); vec v(n, fill::randu); mat D = diagmat(v); // NxN diagonal matrix mat E = diagmat(v, 1); // (N+1)x(N+1) diagonal matrix mat res = B + C + D; res += E.submat(0, 0, 1, 1); // the result is an upper triangular matrix return as_doubles_matrix(res); }
The diagvec()
function extracts the specified diagonal from a matrix. The
default is the main diagonal (k = 0
).
Usage:
diagvec(matrix); diagvec(matrix, k); // k = 0 -> main diagonal // k > 0 -> above main diagonal // k < 0 -> below main diagonal
[[cpp11::register]] doubles diagvec1_(const int& n) { mat A(n, n, fill::randu); vec B = diagvec(A); vec C = diagvec(A, 1); vec res = B.subvec(0, 1) + C; return as_doubles(res); }
The diags()
function generates a dense matrix with diagonals specified by
column vectors from an input matrix and a vector to indicate the diagonals.
Usage:
diags(matrix, vector, number_of_rows, number_of_columns);
Each element in the input vector specifies diagonal k
, where:
k = 0
is the main diagonalk > 0
is above the main diagonalk < 0
is below the main diagonal[[cpp11::register]] doubles_matrix<> diags1_(const int& n) { mat V(n, n, fill::randu); ivec D = {0, -1}; mat X = diags(V, D, n, n); // lower triangular matrix return as_doubles_matrix(X); }
The diff()
function computes the differences between adjacent elements in a
vector or matrix. For a vector, the output is a vector of length n-k
(the
default is k = 1
). For a matrix, the output is a matrix with n-k
rows
when dim = 0
(the default) and m-k
columns when dim = 1
. If k
is greater
than the length of the vector or the number or rows/columns, the output is an
empty vector/matrix.
Usage:
diff(vector); diff(vector, k); diff(matrix); diff(matrix, k); diff(matrix, k, dim); // dim = 0 -> differences along columns // dim = 1 -> differences along rows
[[cpp11::register]] doubles_matrix<> diff1_(const int& n) { vec a = randu<vec>(n); vec b = diff(a); mat res(n, 2, fill::zeros); res.col(0) = a; for (int i = 1; i < n; ++i) { res(i, 1) = b(i - 1); } return as_doubles_matrix(res); }
The dot()
, cdot()
, and norm_dot()
functions compute the dot product of two
vectors. The cdot()
function computes the complex conjugate dot product, and
the norm_dot()
function computes the dot product and normalises the result by
the product of the Euclidean norms of the input vectors.
[[cpp11::register]] doubles dot1_(const int& n) { vec A(n, fill::randu); vec B(n, fill::randu); return writable::doubles({dot(A, B), cdot(A, B), norm_dot(A, B)}); }
norm()
is more robust for calculating the norm, as it handles underflows and
overflows.
The eps()
function computes the distance of each element in a scalar, vector
or matrix to the next largest floating point representation. For vector input,
the output is a vector of the same orientation and length. For matrix input,
the output is a matrix of the same dimensions.
[[cpp11::register]] doubles_matrix<> eps1_(const int& n) { mat A(n, n, fill::randu); mat B = eps(A); return as_doubles_matrix(B); }
The expmat()
function computes the matrix exponential of a square matrix. If
the matrix exponential cannot be computed, the function throws a
std::runtime_error
, same if the input is not a square matrix.
[[cpp11::register]] doubles_matrix<> expmat1_(const int& n) { mat A(n, n, fill::randu); mat B = expmat(A); return as_doubles_matrix(B); }
exp()
function to each element.expmat_sym()
is faster.The expmat_sym()
function computes the matrix exponential of a symmetric or
Hermitian matrix. If the matrix exponential cannot be computed, the function
throws a std::runtime_error
, same if the input is not a square matrix.
[[cpp11::register]] doubles_matrix<> expmat_sym1_(const int& n) { mat A(n, n, fill::randu); A = A + A.t(); // make A symmetric mat B = expmat_sym(A); return as_doubles_matrix(B); }
The find()
function returns the indices of non-zero elements in a vector,
or that satisfy a relational condition in a vector or matrix. The output is a
vector of indices (uvec
).
Usage:
find(vector); find(vector, k); find(vector, k, s); find(matrix); find(matrix, k); find(matrix, k, s);
The parameter k
(k=0
by default) returns the indices of all non-zero
elements or elements that meet the condition. The optional parameter
s = "first"
returns the first m
non-zero indices or indices that meet the
condition, and s = "last"
returns the last m
non-zero indices or indices
that meet the condition.
[[cpp11::register]] list find1_(const int& n) { mat A(n, n, fill::randu); mat B(n, n, fill::randu); uvec q1 = find(A > B); uvec q2 = find(A > 0.5); uvec q3 = find(A > 0.5, 3, "last"); // change elements of A greater than 0.5 to 1 A.elem(find(A > 0.5)).ones(); return writable::list(as_integers(q1), as_integers(q2), as_integers(q3)); }
clamp()
is more efficient..replace()
is more efficient.The find_finite()
function returns the indices of finite elements in a vector
or matrix. The output is a vector of indices (uvec
).
[[cpp11::register]] integers find_finite1_(const int& n) { mat A(n, n, fill::randu); uvec q = find_finite(A); return as_integers(q); }
The find_nonfinite()
function returns the indices of non-finite elements in a
vector or matrix. The output is a vector of indices (uvec
).
[[cpp11::register]] integers find_nonfinite1_(const int& n) { mat A(n, n, fill::randu); A(0, 0) = datum::inf; uvec q = find_nonfinite(A); return as_integers(q); }
To replace instances of a specific non-finite value (eg. NaN
or Inf
), it is
more efficient to use .replace()
.
The find_nan()
function returns the indices of NaN elements in a vector or
matrix. The output is a vector of indices (uvec
).
[[cpp11::register]] integers find_nan1_(const int& n) { mat A(n, n, fill::randu); A(0, 0) = datum::nan; uvec q = find_nan(A); return as_integers(q); }
To replace instances of NaN
values, it is more efficient to use .replace()
.
The find_unique()
function returns the indices of unique elements in a vector
or matrix. The output is a vector of indices (uvec
).
[[cpp11::register]] integers find_unique1_(const int& n) { mat A(n, n, fill::randu); A(0, 0) = A(1, 1); uvec q = find_unique(A); return as_integers(q); }
The fliplr()
function generates a copy of the input matrix with the order of
the columns reversed, and the flipud()
function generates a copy of the input
matrix with the order of the rows reversed.
[[cpp11::register]] list flip1_(const int& n) { mat A(n, n, fill::randu); mat B = fliplr(A); mat C = flipud(A); writable::list res(3); res[0] = as_doubles_matrix(A); res[1] = as_doubles_matrix(B); res[2] = as_doubles_matrix(C); return res; }
The imag()
and real()
functions extract the imaginary and real parts of
each element in a complex matrix, respectively.
[[cpp11::register]] list imag1_(const int& n) { cx_mat X(n, n, fill::randu); mat Y = imag(X); mat Z = real(X); writable::list res(2); res[0] = as_doubles_matrix(Y); res[1] = as_doubles_matrix(Z); return res; }
To convert a complex matrix to a list of real matrices, it is more efficient to
use as_complex_matrix()
.
The ind2sub()
function converts a linear index or vector of indexes to
subscripts. The output is a vector of indices (uvec
) if the input index is a
scalar, and a matrix of indices (umat
) if the input index is a vector.
Usage:
uvec sub = ind2sub(size(X), index) uvec sub = ind2sub(size(n_rows, n_cols), index) uvec sub = ind2sub(size(n_rows, n_cols, n_slices), index) umat sub = ind2sub(size(X), vector_of_indices) umat sub = ind2sub(size(n_rows, n_cols), vector_of_indices) umat sub = ind2sub(size(n_rows, n_cols, n_slices), vector_of_indices)
[[cpp11::register]] list ind2sub1_(const int& n) { mat M(n, n, fill::randu); uvec s = ind2sub(size(M), n); uvec indices = find(M > 0.5); umat t = ind2sub(size(M), indices); cube Q(2,3,4); uvec u = ind2sub(size(Q), 8); writable::list res(3); res[0] = as_integers(s); res[1] = as_integers_matrix(t); res[2] = as_integers(u); return res; }
The index_min()
and index_max()
functions return the indices of the minimum
and maximum values in a vector, matrix or cube. For an input vector, the output
is a scalar index (uword
). For an input matrix, the output is a vector of
indices (uvec
) with row orientation for the argument dim = 0
(default) with
the min/max for each column, and column orientation for dim = 1
with the
min/max for each row. For an input cube, the output is a cube of indices
(ucube
) with the min/max for each slice's columns when dim = 0
, the min/max
for each slice's rows when dim = 1
, and the min/max for each slice when
dim = 2
. For complex objects, the absolute value is used to compare the
elements.
Usage:
// index_max is analogous
index_min(vector)
index_min(matrix)
index_min(matrix, dim)
index_min(cube)
index_min(cube, dim)
[[cpp11::register]] doubles index_min1_(const int& n) { vec v(n, fill::randu); uword i = index_max(v); double max_val_in_v = v(i); mat M(n, n + 1, fill::randu); urowvec ii = index_max(M); ucolvec jj = index_max(M, 1); // max values in col 0 and row n return writable::doubles res({M(ii(0), 0), M(n, jj(n))}); }
The inplace_trans()
and inplace_strans()
function return the in-place
transpose of a dense matrix. For both functions the optional method = "lowmem"
argument uses a low memory (and slower) algorithm for the transpose (the default
is method = "std"
).
For real matrices:
inplace_trans()
returns the common transpose of the input matrix.inplace_strans()
does not apply.For complex matrices:
inplace_trans()
returns the Hermitian transpose (conjugate transpose) of the
input matrix.inplace_strans()
returns the transposed copy without taking the conjugate of
the elements of the input matrix.[[cpp11::register]] doubles_matrix<> inplace_trans1_(const int& n) { mat X(n, n, fill::randu); inplace_trans(X); return as_doubles_matrix(X); } [[cpp11::register]] list inplace_strans1_(const int& n) { cx_mat X(n, n, fill::randu); inplace_strans(X); return as_complex_matrix(X); }
The intersect()
function returns the common elements for two vectors or
matrices. The output is an ascending sorted vector of unique common elements.
[[cpp11::register]] integers intersect1_(const int& n) { ivec A = regspace<ivec>(n, 1); // n, ..., 1 ivec B = regspace<ivec>(2, n + 1); // 2, ..., n + 1 ivec C = intersect(A, B); // 2, ..., n return as_integers(C); }
The join_rows()
and join_cols()
functions concatenate matrices horizontally
and vertically, respectively. The input matrices must have the same number of
rows for join_rows()
and the same number of columns for join_cols()
. Both
functions accept from two to four matrices as input.
Alternatively, join_horiz()
and join_vert()
can be used as aliases for
join_rows()
and join_cols()
, respectively.
[[cpp11::register]] list join_rows1_(const int& n) { mat A(n, 1, fill::randu); mat B(n, 1, fill::randu); mat C(n, 1, fill::randu); mat D = join_rows(A, B, C); mat E = join_cols(A, B, C); return writable::list({A, B, C, D, E}); }
The join_slices()
function concatenates cubes along the third dimension. For
two matrices, the input matrices must have the same number of rows and columns.
For two cubes, the input cubes must have the same number of rows and columns.
For matrix and cube, the number of rows and columns of the matrix must match the
number of rows and columns of the cube.
Usage:
join_slices(matrix, matrix) join_slices(cube, cube); join_slices(matrix, cube); join_slices(cube, matrix);
[[cpp11::register]] list join_cubes1_(const int& n) { cube C(n, n + 1, 3, fill::randu); cube D(n, n + 1, 4, fill::randu); cube E = join_slices(C, D); size_t m = C.n_slices + D.n_slices; writable::list res(m); for (size_t i = 0; i < m; ++i) { res[i] = as_doubles_matrix(E.slice(i)); } return res; }
The kron()
function computes the Kronecker tensor product of two matrices.
[[cpp11::register]] doubles_matrix<> kron1_(const int& n) { mat A(n, n + 1, fill::randu); mat B(n + 1, n, fill::randu); mat K = kron(A, B); return as_doubles_matrix(K); }
The log_det()
function computes the natural logarithm of the determinant of a
square matrix based on LU decomposition. If the matrix is not square or the
computation fails, the function throws a std::runtime_error
exception.
Usage:
complex val = log_det(X);
log_det(val, sign, X);
Form 1: log_det(X)
returns the complex logarithm of the determinant of X
. If
the input matrix is real, the imaginary part of the result is zero.
Form 2: log_det(val, sign, X)
returns a bool indicating if the calculation
was successful and stores the logarithm of the determinant in the val
and
sign
variables such that det(X) = sign * exp(val)
. If the computation fails,
the values of val
and sign
are undefined and it returns false
without
throwing an exception.
[[cpp11::register]] list log_det1_(const int& n) { mat A(n, n, fill::randu); cx_double res1 = log_det(A); // form 1 cpp11::writable::list res2; res2.push_back(writable::doubles({std::real(res1)})); res2.push_back(writable::doubles({std::imag(res1)})); double val; double sign; bool ok = log_det(val, sign, A); // form 2 writable::list res3(3); res3[0] = doubles({val}); res3[1] = doubles({sign}); res3[2] = logicals({ok}); writable::list res(2); res[0] = res2; res[1] = res3; return res; }
The log_det_sympd()
function computes the natural logarithm of the determinant
of a symmetric positive definite matrix. If the matrix is not square or the
computation fails, a std::runtime_error
exception is thrown.
Form 1: log_det_sympd(X)
returns the logarithm of the determinant of X
.
Form 2: log_det_sympd(val, X)
returns a bool indicating if the calculation
was successful and stores the logarithm of the determinant in the val
variable. If the computation fails, the value of val
is undefined and it
returns false
without throwing an exception.
[[cpp11::register]] list log_det_sympd1_(const int& n) { mat A(n, n, fill::randu); A = A * A.t(); // make A symmetric positive definite double val = log_det_sympd(A); // form 1 double val2; bool ok = log_det_sympd(val2, A); // form 2 writable::list res(2); res[0] = doubles({val}); writable::list res2(2); res2[0] = doubles({val2}); res2[1] = logicals({ok}); res[1] = res2; return res; }
The logmat()
function computes the matrix logarithm of a square matrix. If the
input matrix is not square or the computation fails, a std::runtime_error
exception is thrown.
Form 1: logmat(X)
returns the matrix logarithm of X
.
Form 2: logmat(val, X)
returns a bool indicating if the calculation was
successful and stores the matrix logarithm in the val
variable. If the
computation fails, the value of val
is undefined and it returns false
without
throwing an exception.
[[cpp11::register]] list logmat1_(const int& n) { mat A(n, n, fill::randu); cx_mat B = logmat(A); return as_complex_matrix(B); }
log()
function to each element.logmat_sympd()
is
faster.The logmat_sympd()
function computes the matrix logarithm of a symmetric
positive definite matrix. If the input matrix is not square or the computation
fails, a std::runtime_error
exception is thrown.
Form 1: logmat_sympd(X)
returns the matrix logarithm of X
.
Form 2: logmat_sympd(Y, X)
returns a bool indicating if the calculation was
successful and stores the matrix logarithm in the Y
variable. If the
computation fails, the value of Y
is undefined and it returns false
without
throwing an exception.
[[cpp11::register]] doubles_matrix<> logmat_sympd1_(const int& n) { mat A(n, n, fill::randu); mat B = A * A.t(); // make symmetric matrix mat C = logmat_sympd(B); return as_doubles_matrix(C); }
The min()
and max()
functions return the minimum and maximum values in a
vector, matrix or cube. For a vector, the output is a scalar. For a matrix, the
output is a vector with the minimum or maximum value for each column when
dim = 0
(default) and each row when dim = 1
. For a cube, the output is a
cube with the minimum or maximum value for each slice's columns when dim = 0
,
the minimum or maximum value for each slice's rows when dim = 1
, and the
minimum or maximum value for each slice when dim = 2
. For complex objects,
the absolute value is used to compare the elements.
Usage:
// max() is analogous
min(vector);
min(vector1, vector2);
min(matrix);
min(matrix, dim);
min(matrix1, matrix2);
min(cube);
min(cube, dim);
min(cube1, cube2);
[[cpp11::register]] list max1_(const int& n) { mat M(n, n, fill::randu); rowvec a = max(M); rowvec b = max(M, 0); colvec c = max(M, 1); // element-wise maximum mat X(n, n, fill::randu); mat Y(n, n, fill::randu); mat Z = arma::max(X, Y); // use arma:: prefix to distinguish from std::max() writable::list res(4); res[0] = as_doubles(a.t()); res[1] = as_doubles(b.t()); res[2] = as_doubles(c); res[3] = as_doubles_matrix(Z); return res; }
The nonzeros()
function returns the non-zero values in a vector, matrix or
cube. The output is a column vector of non-zero values (vec
). The input matrix
can be dense or sparse.
[[cpp11::register]] doubles nonzeros1_(const int& n) { mat A(n, n, fill::randu); A.elem(find(A < 0.5)).zeros(); // set elements less than 0.5 to zero vec B = nonzeros(A); return as_doubles(B); }
Caveats:
accu(X != 0)
is more efficient.X.n_nonzero
is more efficient.The norm()
function computes the p-norm of a vector or matrix. The optional
argument p
can be p = {1,...,n}
, p = "inf
", p = "-inf"
, or p = "fro"
for the 1,2,...,n-norms, maximum norm, minimum quasi-norm, and Frobenius norm,
respectively. The default is the 2-norm for vectors and the Frobenius norm for
matrices.
[[cpp11::register]] doubles norm1_(const int& n) { vec A(n, fill::randu); mat B(n, n, fill::randu); double a1 = norm(A, 1); double a2 = norm(A, 2); double a3 = norm(A, "inf"); double a4 = norm(A, "-inf"); double a5 = norm(A, "fro"); double b1 = norm(B, 1); double b2 = norm(B, 2); double b3 = norm(B, "inf"); double b4 = norm(B, "-inf"); double b5 = norm(B, "fro"); writable::doubles res({a1, a2, a3, a4, a5, b1, b2, b3, b4, b5}); attr(res, "names") = strings({"a1", "a2", "a3", "a4", "a5", "b1", "b2", "b3", "b4", "b5"}); }
norm2est()
.vecnorm()
.accu(X != 0)
.The norm2est()
function computes a fast estimate of the 2-norm of a matrix.
The function iterates until |est1 - est2| / max(est1, est2) < tol
or the
number of iterations is equal to max_iter
. The default values are tol = 1e-5
and max_iter = 100
.
[[cpp11::register]] doubles norm2est1_(const int& n) { mat A(n, n, fill::randu); return doubles({norm2est(A)}); }
The normalise()
function normalises vectors or matrices to a p-norm. The
default is the 2-norm for vectors and matrices (p = 2
). For matrices, the
optional dim
argument specifies the dimension along which to normalise the
matrix, with dim = 0
normalising along columns and dim = 1
normalising along
rows.
[[cpp11::register]] list normalise1_(const int& n) { mat A(n, n, fill::randu); mat B = normalise(A, 1, 0); mat C = normalise(A, 1, 1); writable::list res(2); res[0] = as_doubles_matrix(B); res[1] = as_doubles_matrix(C); res.attr("names") = strings({"B_norm1_cols", "C_norm1_rows"}); return res; }
The pow()
function computes the element-wise power of a matrix or vector. The
power argument can be a scalar, vector, or matrix.
[[cpp11::register]] list pow1_(const int& n) { mat A(n, n, fill::randu); mat B(n, n, fill::randu); mat C = pow(A, 2); mat D = pow(A, B); writable::list res(2); res[0] = as_doubles_matrix(C); res[1] = as_doubles_matrix(D); return res; }
square()
instead.powmat()
.The powmat()
function computes the matrix power of a square matrix. The power
argument must be a scalar (e.g., double
or int
). If the input matrix is not
square, the function throws a std::runtime_error
exception.
Usage:
Y = powmat(X, 2); // store a matrix powmat(Y, X, 2); // store the matrix in Y and return true if successful
If the calculation fails:
Y = powmat(X)
throws a std::runtime_error
exception.powmat(Y, X, 2)
returns a bool set to false (exception is not thrown).[[cpp11::register]] list powmat1_(const int& n) { mat A(n, n, fill::randu); mat B = powmat(A, 2); // form 1 mat C; bool ok = powmat(C, A, 2); // form 2 writable::list res(2); res[0] = as_doubles_matrix(B); writable::list res2(2); res2[0] = as_doubles_matrix(C); res2[1] = logicals({ok}); res[1] = res2; res.attr("names") = strings({"powmat_form1", "powmat_form2"}); res2.attr("names") = strings({"result", "status"}); return res; }
The prod()
function computes the product of the elements in a vector or
matrix. The optional dim
argument specifies the dimension along which to
compute the matrix product, with dim = 0
computing the product along columns
and dim = 1
computing the product along rows.
[[cpp11::register]] list prod1_(const int& n) { mat A(n, n, fill::randu); rowvec b = prod(A, 0); vec c = prod(A, 1); writable::list res(2); res[0] = as_doubles(b.t()); res[1] = as_doubles(c); return res; }
The rank()
function computes the rank of a matrix based on singular values.
The optional tolerance
argument specifies the tolerance for the singular
values. The default is tolerance = max_rc * max_sv * epsilon
, where:
max_rc = max(X.n_rows, X.n_cols)
max_sv = max(singular values of X)
epsilon = 1 - min(singular values of X > 1)
Usage:
val = rank(X, tolerance); // form 1 rank(val, X, tolerance); // form 2
[[cpp11::register]] list rank1_(const int& n) { mat A(n, n, fill::randu); int r1 = rank(A); uword r2; bool ok = rank(r2, A); writable::list res(2); res[0] = integers({r1}); writable::list res2(2); res2[0] = integers({static_cast<int>(r2)}); res2[1] = logicals({ok}); res[1] = res2; res.attr("names") = strings({"rank1", "rank2"}); res2.attr("names") = strings({"result", "status"}); return res; }
The rcond()
function computes the 1-norm estimate of the reciprocal condition
number of a square matrix. Values close to one indicate a well-conditioned
matrix, while values close to zero indicate a poorly conditioned matrix. If the
input matrix is not square, the function throws a std::runtime_error
exception.
[[cpp11::register]] doubles rcond1_(const int& n) { mat A(n, n, fill::randu); return doubles({rcond(A)}); }
To efficiently calculate the reciprocal condition and the matrix inverse at
the same time, use inv()
.
The repelem()
function replicates the elements of a matrix.
Usage:
repelem(A, num_copies_per_row, num_copies_per_col)
The generated matrix has the following size:
n_rows = num_copies_per_row * A.n_rows
n_cols = num_copies_per_col * A.n_cols
[[cpp11::register]] list repelem1_(const int& n) { mat A(n, n, fill::randu); mat B = repelem(A, 2, 3); writable::list res(2); res[0] = as_doubles_matrix(A); res[1] = as_doubles_matrix(B); return res; }
The repmat()
function replicates a matrix in a block-like fashion.
Usage:
repmat(A, num_reps_row, num_reps_col)
The generated matrix has the following size:
n_rows = num_reps_row * A.n_rows
n_cols = num_reps_col * A.n_cols
[[cpp11::register]] list repmat1_(const int& n) { mat A(n, n, fill::randu); mat B = repmat(A, 2, 3); writable::list res(2); res[0] = as_doubles_matrix(A); res[1] = as_doubles_matrix(B); return res; }
To apply a vector operation on each row or column of a matrix, it is generally
more efficient to use .each_row()
or .each_col()
.
The reshape()
function changes the size of a vector, matrix or cube while
keeping the elements in the same order.
Usage:
reshape(vector, n_rows, n_cols) reshape(matrix, n_rows, n_cols) reshape(vector, size(matrix)) reshape(matrix, size(matrix)) reshape(cube, n_rows, n_cols, n_slices) reshape(cube, size(cube))
[[cpp11::register]] list reshape1_(const int& n) { mat A(n, n + 1, fill::randu); mat B = reshape(A, n + 1, n); mat C(n + 4, n - 1); C = reshape(A, size(C)); writable::list res(2); res[0] = as_doubles_matrix(B); res[1] = as_doubles_matrix(C); return res; }
The resize()
function changes the size of a vector, matrix or cube while
preserving the data. If the new size is larger, the new elements are set to
zero.
Usage:
resize(vector, n_rows, n_cols) resize(matrix, n_rows, n_cols) resize(vector, size(matrix)) resize(matrix, size(matrix)) resize(cube, n_rows, n_cols, n_slices) resize(cube, size(cube))
[[cpp11::register]] list resize2_(const int& n) { mat A(n, n + 1, fill::randu); mat B = resize(A, n + 1, n); mat C(n + 4, n - 1); C = resize(A, size(C)); writable::list res(3); res[0] = as_doubles_matrix(A); res[1] = as_doubles_matrix(B); res[2] = as_doubles_matrix(C); return res; }
The reverse()
function reverses the order of elements in a vector or matrix.
The optional dim
argument specifies the dimension along which to reverse the
matrix, with dim = 0
reversing along columns and dim = 1
reversing along
rows (dim = 0
by default).
[[cpp11::register]] list reverse1_(const int& n) { mat A(n, n, fill::randu); mat B = reverse(A, 0); mat C = reverse(A, 1); writable::list res(3); res[0] = as_doubles_matrix(A); res[1] = as_doubles_matrix(B); res[2] = as_doubles_matrix(C); return res; }
The roots()
function computes the roots of a polynomial with real or complex
coefficients. The input is a vector of coefficients, with the first element
corresponding to the highest degree term. If the computation fails, the function
throws a std::runtime_error
exception.
Usage:
Y = roots(X) // store the roots in Y roots(Y, X) // store the roots in Y and return true if successful
[[cpp11::register]] list roots1_(const int& n) { // y = p_1*x^n + p_2*x^(n-1) + ... + p_(n-1)*x + p_n // p_1, ..., p_n are random numbers vec y(n, 1, fill::randu); // note that mat and cx_mat operate directly // but vec and cx_vec require conv_to<...>::from() cx_vec z = roots(conv_to<cx_vec>::from(y)); list res = as_complex_doubles(z); return res; }
The shift()
function generates a copy of a vector V
or a matrix M
with the
elements shifted by N
positions in a circular manner. The N
argument can be
positive or negative. For a matrix, the optional dim
argument specifies the
dimension along which to shift the matrix, with dim = 0
shifting along columns
(default) and dim = 1
shifting along rows.
Usage:
shift(V, N) shift(M, N) shift(M, N, dim)
[[cpp11::register]] list shift1_(const int& n) { mat A(n, n, fill::randu); mat B = shift(A, -1); mat C = shift(A, +1); writable::list res(3); res[0] = as_doubles_matrix(A); res[1] = as_doubles_matrix(B); res[2] = as_doubles_matrix(C); return res; }
The shuffle()
function generates a copy of a vector V
or matrix M
with the
elements shuffled. For a matrix, the optional dim
argument specifies the
dimension along which to shuffle the matrix, with dim = 0
shuffling along
columns (default) and dim = 1
shuffling along rows.
Usage:
shuffle(V) shuffle(M) shuffle(M, dim)
[[cpp11::register]] list shuffle1_(const int& n) { mat A(n, n, fill::randu); mat B = shuffle(A); writable::list res(2); res[0] = as_doubles_matrix(A); res[1] = as_doubles_matrix(B); return res; }
The size()
function obtains the dimensions of a matrix or cube X
. It can
also be used to explicitly specify the dimensions of a matrix or cube.
Usage:
size(X) size(n_rows, n_cols) size(n_rows, n_cols, n_slices)
[[cpp11::register]] list size1_(const int& n) { mat A(n, n, fill::randu); mat B(size(A), fill::zeros); mat C; C.randu(size(A)); mat D = ones<mat>(size(A)); mat E(2 * n, 2 * n, fill::ones); E(1, 2, size(C)) = C; // access submatrix of E mat F(size(A) + size(E), fill::randu); mat G(size(A) * 2, fill::randu); writable::list res(7); res[0] = as_doubles_matrix(A); res[1] = as_doubles_matrix(B); res[2] = as_doubles_matrix(C); res[3] = as_doubles_matrix(D); res[4] = as_doubles_matrix(E); res[5] = as_doubles_matrix(F); res[6] = as_doubles_matrix(G); return res; }
The sort()
function returns a sorted version of a vector V
or matrix M
.
For a matrix, the optional dim
argument specifies the dimension along which to
sort the matrix, with dim = 0
sorting along columns (default) and dim = 1
sorting along rows. The optional sort_direction
argument specifies the sorting
direction, with sort_direction = "ascend"
(default) sorting in ascending order
and sort_direction = "descend"
sorting in descending order.
Usage:
sort(V) sort(V, sort_direction) sort(M) sort(M, sort_direction) sort(M, sort_direction, dim)
[[cpp11::register]] list sort1_(const int& n) { mat A(n, n, fill::randu); mat B = sort(A); mat C = sort(A, "descend"); mat D = sort(A, "ascend", 1); mat E = sort(A, "descend", 1); writable::list res(5); res[0] = as_doubles_matrix(A); res[1] = as_doubles_matrix(B); res[2] = as_doubles_matrix(C); res[3] = as_doubles_matrix(D); res[4] = as_doubles_matrix(E); return res; }
The sort_index()
function returns a vector describing the sorted order of the
elements of a vector V
or matrix M
. The optional sort_direction
argument
specifies the sorting direction, with sort_direction = "ascend"
(default)
sorting in ascending order and sort_direction = "descend"
sorting in
descending order.
Usage:
sort_index(V) sort_index(V, sort_direction) sort_index(M) sort_index(M, sort_direction)
[[cpp11::register]] list sort_index1_(const int& n) { mat A(n, n, fill::randu); uvec B = sort_index(A); uvec C = sort_index(A, "descend"); writable::list res(3); res[0] = as_doubles_matrix(A); res[1] = as_integers(B); res[2] = as_integers(C); return res; }
The spdiags()
function generates a sparse matrix with diagonals specified by
column vectors from an input matrix and a vector to indicate the diagonals.
Usage:
spdiags(matrix, vector, number_of_rows, number_of_columns);
Each element in the input vector specifies diagonal k
, where:
k = 0
is the main diagonalk > 0
is above the main diagonalk < 0
is below the main diagonal[[cpp11::register]] doubles_matrix<> spdiags1_(const int& n) { mat V(n, n, fill::randu); ivec D = {0, -1}; sp_mat X = spdiags(V, D, n, n); // lower triangular matrix return as_doubles_matrix(X); }
The sqrtmat()
function computes the complex square root of a general square
matrix. If the input matrix is not square, the function throws an error. If the
matrix appears to be singular, an approximate square root is attempted.
Usage:
B = sqrtmat(A)
sqrtmat(B, A)
[[cpp11::register]] list sqrtmat1_(const int& n) { mat A(n, n, fill::randu); cx_mat B = sqrtmat(A); cx_mat C; bool ok = sqrtmat(C, A); writable::list res(4); res[0] = as_doubles_matrix(A); res[1] = as_complex_matrix(B); res[2] = as_complex_matrix(C); res[3] = logicals({ok}); return res; }
The sqrtmat_sympd()
function computes the square root of a symmetric positive
definite matrix. If the input matrix is not square or the computation fails, the
function throws an error.
Usage:
B = sqrtmat_sympd(A)
sqrtmat_sympd(B, A)
[[cpp11::register]] doubles_matrix<> sqrtmat_sympd1_(const int& n) { mat A(n, n, fill::randu); A = A * A.t(); // make A symmetric positive definite mat B = sqrtmat_sympd(A); return as_doubles_matrix(B); }
The sum()
function computes the sum of the elements in a vector, matrix or
cube. For a matrix, the optional dim
argument specifies the dimension along
which to compute the sum, with dim = 0
computing the sum along columns and
dim = 1
computing the sum along rows. For a cube, the optional dim
argument
specifies the dimension along which to compute the sum, with dim = 0
computing
the sum along columns, dim = 1
computing the sum along rows, and dim = 2
computing the sum along slices.
Usage:
sum(vector) sum(matrix) sum(matrix, dim) sum(cube) sum(cube, dim)
[[cpp11::register]] list sum2_(const int& n) { mat A(n, n, fill::randu); vec a = sum(A, 1); vec b = sum(A, 0).t(); double c = accu(A); // overall sum writable::list res(3); res[0] = as_doubles(a); res[1] = as_doubles(b); res[2] = doubles({c}); return res; }
The sub2ind()
function converts subscripts to a linear index. If a subscript
is out of range, the function returns an error.
Usage:
sub2ind(size(matrix), row, col) sub2ind(size(matrix), matrix_of_subscripts) sub2ind(size(cube), row, col, slice) sub2ind(size(cube), matrix_of_subscripts)
[[cpp11::register]] integers sub2ind1_(const int& n) { mat M(n, n, fill::randu); uword i = sub2ind(size(M), n - 1, n - 1); return integers({static_cast<int>(i)}); }
The symmatu()
function generates a symmetric matrix from a square matrix A
by reflecting the upper triangle to the lower triangle. The symmatl()
function
generates a symmetric matrix from a square matrix A
by reflecting the lower
triangle to the upper triangle. If A
is a complex matrix, the reflection uses
the complex conjugate of the elements. To disable the complex conjugate, set
do_conj
to false
. If A
is non-square, an error is thrown.
Usage:
symmatu(A) symmatu(A, do_conj) symmatl(A) symmatl(A, do_conj)
[[cpp11::register]] doubles_matrix<> symmatu1_(const int& n) { mat A(n, n, fill::randu); mat B = symmatu(A); return as_doubles_matrix(B); }
The trace()
function computes the sum of the elements on the main diagonal of
a matrix. If the input matrix is not square, an error is thrown.
Usage:
trace(X)
[[cpp11::register]] doubles trace1_(const int& n) { mat A(n, n, fill::randu); return doubles({trace(A)}); }
The trans()
function transposes a matrix. For a real matrix,
trans()
provides a transposed copy of the matrix. For a complex matrix,
trans()
provides a Hermitian (conjugate) transposed copy, where the signs of
the imaginary components are flipped. The strans()
function provides a simple
transposed copy, where the signs of the imaginary components are not flipped.
Usage:
trans(A) strans(A)
[[cpp11::register]] list trans1_(const int& n) { mat A(n, n, fill::randu); mat B = trans(A); mat C = A.t(); // same as trans(A) writable::list res(2); res[0] = as_doubles_matrix(A); res[1] = as_doubles_matrix(C); return res; }
The trapz()
function computes the trapezoidal integral of a vector Y
with
respect to spacing in a vector X
. The optional dim
argument specifies the
dimension along which to compute the trapezoidal integral, with dim = 0
computing the integral along columns and dim = 1
computing the integral along
rows.
Usage:
trapz(X, Y) trapz(X, Y, dim) trapz(Y) trapz(Y, dim)
[[cpp11::register]] doubles_matrix<> trapz1_(n) { vec X = linspace<vec>(0, datum::pi, n); vec Y = sin(X); mat Z = trapz(X,Y); return as_doubles_matrix(Z); }
The trimatu()
function creates a new matrix by copying the upper triangular
part from a square matrix A
and setting the remaining elements to zero. The
trimatl()
function creates a new matrix by copying the lower triangular part
from a square matrix A
and setting the remaining elements to zero. The
optional k
argument specifies the diagonal (k = 0
by default, which sets
the main diagonal). For k > 0
, the k
-th upper-diagonal is used (above the
main diagonal, towards the top-right corner). For k < 0
, the k
-th
lower-diagonal is used (below the main diagonal, towards the bottom-left
corner).
Usage:
trimatu(A) trimatu(A, k) trimatl(A) trimatl(A, k)
[[cpp11::register]] doubles_matrix<> trimatu1_(const int& n) { mat A(n, n, fill::randu); mat B = trimatu(A); return as_doubles_matrix(B); }
The trimatu_ind()
function returns a column vector containing the indices of
elements that form the upper triangular part of a matrix A
. The
trimatl_ind()
function returns a column vector containing the indices of
elements that form the lower triangular part of a matrix A
. The optional k
argument specifies the diagonal (k = 0
by default, which sets the main
diagonal). For k > 0
, the k
-th upper-diagonal is used (above the main
diagonal, towards the top-right corner). For k < 0
, the k
-th lower-diagonal
is used (below the main diagonal, towards the bottom-left corner).
Usage:
trimatu_ind(size(A)) trimatu_ind(size(A), k) trimatl_ind(size(A)) trimatl_ind(size(A), k)
[[cpp11::register]] integers trimatu_ind1_(const int& n) { mat A(n, n, fill::randu); uvec B = trimatu_ind(size(A)); return as_integers(B); }
The unique()
function returns the unique elements of a vector or matrix A
,
sorted in ascending order. If A
is a vector, the output is also a vector with
the same orientation (row or column) as A
. If A
is a matrix, the output is
always a column vector.
Usage:
unique(A)
[[cpp11::register]] doubles unique1_(const int& n) { mat A(n, n, fill::randu); A(0, 0) = A(1, 1) vec B = unique(A); return as_doubles(B); }
The vecnorm()
function computes the p-norm of each column vector (when
dim = 0
) or row vector (when dim = 1
) of a matrix X
. The optional p
argument specifies the norm to compute, with p = 2
(default) computing the
2-norm, p = 1
computing the 1-norm, p = "inf"
computing the maximum norm,
and p = "-inf"
computing the minimum quasi-norm.
Usage:
vecnorm(X) vecnorm(X, p) vecnorm(X, p, dim)
[[cpp11::register]] list vecnorm1_(const int& n) { mat A(n, n, fill::randu); colvec a = vecnorm(A, 2).t(); colvec b = vecnorm(A, "inf", 1); writable::list res(2); res[0] = as_doubles(a); res[1] = as_doubles(b); return res; }
The vectorise()
function generates a flattened version of a matrix M
or cube
Q
. The optional dim
argument specifies the dimension along which to flatten
the matrix, with dim = 0
flattening column-wise (default) and dim = 1
flattening row-wise.
Usage:
vectorise(M) vectorise(M, dim) vectorise(Q)
[[cpp11::register]] doubles vectorise1_(const int& n) { mat A(n, n, fill::randu); vec B = vectorise(A); return as_doubles(B); }
Miscellaneous element-wise functions include:
| Function | Description |
|---------------------|---------------------------|
| exp()
| Base-e exponential: e^x
|
| exp2()
| Base-2 exponential: 2^x
|
| exp10()
| Base-10 exponential: 10^x
|
| expm1()
| Compute exp(A)-1
accurately for values of A
close to zero (only for float and double elements) |
| trunc_exp()
| Base-e exponential, truncated to avoid infinity (only for float and double elements) |
| log()
| Natural log: loge(x)
|
| log2()
| Base-2 log: log2(x)
|
| log10()
| Base-10 log: log10(x)
|
| log1p()
| Compute log(1+A)
accurately for values of A
close to zero (only for float and double elements) |
| trunc_log()
| Natural log, truncated to avoid +/-infinity (only for float and double elements) |
| square()
| Square: x^2
|
| sqrt()
| Square root: x^(1.2)
|
| cbrt()
| Cube root: x^(1/3)
|
| floor()
| Largest integral value that is not greater than the input value |
| ceil()
| Smallest integral value that is not less than the input value |
| round()
| Round to nearest integer, with halfway cases rounded away from zero |
| trunc()
| Round to nearest integer, towards zero |
| erf()
| Error function (only for float and double elements) |
| erfc()
| Complementary error function (only for float and double elements) |
| tgamma()
| Gamma function (only for float and double elements) |
| lgamma()
| Natural log of the absolute value of gamma function (only for float and double elements) |
| sign()
| Signum function; for each element a
in A
, the corresponding element b
in B
is: -1
if a < 0
, 0
if a = 0
, +1
if a > 0
. If a
is complex and non-zero, then b = a / abs(a)
|
All of the above functions are applied element-wise, where each element is
treated independently. expmat()
, logmat()
, sqrtmat()
, and powmat()
take
into account matrix structure.
[[cpp11::register]] list misc1_(const int& n) { mat A(n, n, fill::randu); mat B = exp(A); mat C = log(A); mat D = sqrt(A); mat E = round(A); mat F = sign(A); writable::list res(6); res[0] = as_doubles_matrix(A); res[1] = as_doubles_matrix(B); res[2] = as_doubles_matrix(C); res[3] = as_doubles_matrix(D); res[4] = as_doubles_matrix(E); res[5] = as_doubles_matrix(F); return res; }
Trigonometric element-wise functions include:
| Function | Description |
|---------------------|---------------------------|
| cos()
| Cosine: cos(x)
|
| acos()
| Inverse cosine: arccos(x)
|
| cosh()
| Hyperbolic cosine: cosh(x)
|
| acosh()
| Inverse hyperbolic cosine: arccosh(x)
|
| sin()
| Sine: sin(x)
|
| asin()
| Inverse sine: arcsin(x)
|
| sinh()
| Hyperbolic sine: sinh(x)
|
| asinh()
| Inverse hyperbolic sine: arcsinh(x)
|
| tan()
| Tangent: tan(x)
|
| atan()
| Inverse tangent: arctan(x)
|
| tanh()
| Hyperbolic tangent: tanh(x)
|
| atanh()
| Inverse hyperbolic tangent: arctanh(x)
|
| sinc()
| Sinc function: sinc(x) = sin(datum::pi * x) / (datum::pi * x)
for x != 0
, and sinc(x) = 1
for x = 0
|
| atan2()
| Two-argument arctangent: atan2(y, x)
|
| hypot()
| Hypotenuse: hypot(x, y)
|
All of the above functions are applied element-wise, where each element is treated independently.
[[cpp11::register]] list trig1_(const int& n) { mat A(n, n, fill::randu); mat B = cos(A); mat C = sin(A); mat D = tan(A); mat E = atan2(C, B); mat F = hypot(B, C); writable::list res(6); res[0] = as_doubles_matrix(A); res[1] = as_doubles_matrix(B); res[2] = as_doubles_matrix(C); res[3] = as_doubles_matrix(D); res[4] = as_doubles_matrix(E); res[5] = as_doubles_matrix(F); return res; }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.