Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
library(cramR)
library(data.table)
library(DT)
## ----contextual-example, fig.alt="Cumulative regret curve over time for the selected policy"----
# Number of time steps
horizon <- 500L
# Number of simulations
simulations <- 100L
# Number of arms
k = 4
# Number of context features
d= 3
# Reward beta parameters of linear model (the outcome generation models, one for each arm, are linear with arm-specific parameters betas)
list_betas <- cramR::get_betas(simulations, d, k)
# Define the contextual linear bandit, where sigma is the scale of the noise in the outcome linear model
bandit <- cramR::ContextualLinearBandit$new(k = k, d = d, list_betas = list_betas, sigma = 0.3)
# Define the policy object (choose between Contextual Epsilon Greedy, UCB Disjoint and Thompson Sampling)
policy <- cramR::BatchContextualEpsilonGreedyPolicy$new(epsilon=0.1, batch_size=5)
# policy <- cramR::BatchLinUCBDisjointPolicyEpsilon$new(alpha=1.0, epsilon=0.1, batch_size=1)
# policy <- cramR::BatchContextualLinTSPolicy$new(v = 0.1, batch_size=1)
sim <- cram_bandit_sim(horizon, simulations,
bandit, policy,
alpha=0.05, do_parallel = FALSE)
## ----contextual-estimates, fig.alt = "First rows of simulation output estimates"----
head(sim$estimates)
## ----contextual-table, fig.alt = "Table of results"---------------------------
sim$interactive_table
## ----cleanup-autograph, include=FALSE-----------------------------------------
autograph_files <- list.files(tempdir(), pattern = "^__autograph_generated_file.*\\.py$", full.names = TRUE)
if (length(autograph_files) > 0) {
try(unlink(autograph_files, recursive = TRUE, force = TRUE), silent = TRUE)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.