Nothing
Code
as.data.frame(tbl)[1:25, 1:5]
Output
Visit Value at Visit Change from Baseline Value at Visit.1 Change from Baseline.1
1 Baseline <NA> <NA> <NA> <NA>
2 n 7 <NA> 7 <NA>
3 Mean (SD) 141.14 (1.46) <NA> 139.14 (2.19) <NA>
4 Median 141.00 <NA> 139.00 <NA>
5 Min - Max 140.00 - 144.00 <NA> 136.00 - 142.00 <NA>
6 Week 2 <NA> <NA> <NA> <NA>
7 n 7 7 6 6
8 Mean (SD) 140.57 (1.62) -0.6 (1.9) 138.83 (3.25) 0.2 (3.5)
9 Median 141.00 -1.0 140.50 0.5
10 Min - Max 138.00 - 142.00 -3.0 - 2.0 133.00 - 141.00 -5.0 - 5.0
11 Week 4 <NA> <NA> <NA> <NA>
12 n 7 7 6 6
13 Mean (SD) 139.29 (2.81) -1.86 (2.54) 139.83 (3.54) 1.17 (2.04)
14 Median 140.00 -1.00 138.50 0.00
15 Min - Max 134.00 - 142.00 -7.00 - 0.00 138.00 - 147.00 0.00 - 5.00
16 Week 6 <NA> <NA> <NA> <NA>
17 n 5 5 6 6
18 Mean (SD) 140.00 (1.87) -0.40 (1.67) 139.67 (1.97) 1.00 (2.28)
19 Median 140.00 0.00 139.00 0.50
20 Min - Max 138.00 - 143.00 -2.00 - 2.00 138.00 - 143.00 -1.00 - 5.00
21 Week 8 <NA> <NA> <NA> <NA>
22 n 5 5 4 4
23 Mean (SD) 140.60 (1.52) 0.20 (1.64) 139.00 (2.16) -0.50 (2.38)
24 Median 141.00 1.00 139.50 -0.50
25 Min - Max 139.00 - 142.00 -2.00 - 2.00 136.00 - 141.00 -3.00 - 2.00
by
variableCode
as.data.frame(tbl)[1:25, ]
Output
Visit Value at Visit Change from Baseline
1 Baseline <NA> <NA>
2 n 20 <NA>
3 Mean (SD) 139.95 (2.78) <NA>
4 Median 140.00 <NA>
5 Min - Max 134.00 - 145.00 <NA>
6 Week 2 <NA> <NA>
7 n 19 19
8 Mean (SD) 139.68 (2.43) -0.2 (2.9)
9 Median 140.00 -1.0
10 Min - Max 133.00 - 142.00 -5.0 - 5.0
11 Week 4 <NA> <NA>
12 n 18 18
13 Mean (SD) 139.50 (2.64) -0.50 (2.85)
14 Median 139.50 0.00
15 Min - Max 134.00 - 147.00 -7.00 - 5.00
16 Week 6 <NA> <NA>
17 n 15 15
18 Mean (SD) 140.00 (2.00) 0.73 (3.10)
19 Median 139.00 0.00
20 Min - Max 138.00 - 144.00 -5.00 - 7.00
21 Week 8 <NA> <NA>
22 n 12 12
23 Mean (SD) 139.67 (2.02) -0.08 (2.19)
24 Median 140.00 1.00
25 Min - Max 136.00 - 142.00 -4.00 - 2.00
Code
as.data.frame(tbl)[1:25, c(1, 4:9)]
Output
Visit Value at Visit Change from Baseline Value at Visit.1 Change from Baseline.1 Value at Visit.2 Change from Baseline.2
1 Baseline <NA> <NA> <NA> <NA> <NA> <NA>
2 n 7 <NA> 6 <NA> 20 <NA>
3 Mean (SD) 139.14 (2.19) <NA> 139.50 (4.23) <NA> 139.95 (2.78) <NA>
4 Median 139.00 <NA> 138.50 <NA> 140.00 <NA>
5 Min - Max 136.00 - 142.00 <NA> 134.00 - 145.00 <NA> 134.00 - 145.00 <NA>
6 Week 2 <NA> <NA> <NA> <NA> <NA> <NA>
7 n 6 6 6 6 19 19
8 Mean (SD) 138.83 (3.25) 0.2 (3.5) 139.50 (2.35) 0.0 (3.7) 139.68 (2.43) -0.2 (2.9)
9 Median 140.50 0.5 139.50 -0.5 140.00 -1.0
10 Min - Max 133.00 - 141.00 -5.0 - 5.0 136.00 - 142.00 -5.0 - 5.0 133.00 - 142.00 -5.0 - 5.0
11 Week 4 <NA> <NA> <NA> <NA> <NA> <NA>
12 n 6 6 5 5 18 18
13 Mean (SD) 139.83 (3.54) 1.17 (2.04) 139.40 (1.34) -0.60 (3.51) 139.50 (2.64) -0.50 (2.85)
14 Median 138.50 0.00 140.00 0.00 139.50 0.00
15 Min - Max 138.00 - 147.00 0.00 - 5.00 138.00 - 141.00 -5.00 - 4.00 134.00 - 147.00 -7.00 - 5.00
16 Week 6 <NA> <NA> <NA> <NA> <NA> <NA>
17 n 6 6 4 4 15 15
18 Mean (SD) 139.67 (1.97) 1.00 (2.28) 140.50 (2.65) 1.75 (5.38) 140.00 (2.00) 0.73 (3.10)
19 Median 139.00 0.50 140.00 2.50 139.00 0.00
20 Min - Max 138.00 - 143.00 -1.00 - 5.00 138.00 - 144.00 -5.00 - 7.00 138.00 - 144.00 -5.00 - 7.00
21 Week 8 <NA> <NA> <NA> <NA> <NA> <NA>
22 n 4 4 3 3 12 12
23 Mean (SD) 139.00 (2.16) -0.50 (2.38) 139.00 (2.65) 0.00 (3.46) 139.67 (2.02) -0.08 (2.19)
24 Median 139.50 -0.50 140.00 2.00 140.00 1.00
25 Min - Max 136.00 - 141.00 -3.00 - 2.00 136.00 - 141.00 -4.00 - 2.00 136.00 - 142.00 -4.00 - 2.00
Code
tbl <- add_overall(tbl_baseline_chg(data = df, baseline_level = "Baseline", denominator = cards::ADSL))
Message
Original table was not stratified, and overall columns cannot be added.
i Table has been returned unaltered.
Code
tbl <- add_overall(modify_table_body(tbl_baseline_chg(data = df, by = "TRTA", baseline_level = "Baseline", denominator = cards::ADSL), ~ dplyr::filter(.x, dplyr::row_number() %in% 1:5)))
Message
! The structures of the original table and the overall table are not identical, and the resulting table may be malformed.
Code
tbl <- tbl_baseline_chg(data = test_data, baseline_level = "Baseline",
denominator = cards::ADSL)
Condition
Error in `tbl_baseline_chg()`:
! Columns "USUBJID" and "AVISIT" do not uniquely identify the rows in `data`.
i See row number 140.
Code
tbl <- tbl_baseline_chg(data = dplyr::mutate(df, TRTA = as.character(TRTA)), baseline_level = "Baseline", by = "TRTA", denominator = cards::ADSL)
Message
i Converting column "TRTA" to a factor.
Code
gather_ard(tbl)
Output
$tbl_baseline_chg
Message
{cards} data frame: 620 x 12
Output
group1 group1_level variable variable_level stat_name stat_label stat
1 TRTA Placebo AVAL Baseline mean Mean 141.143
2 TRTA Placebo AVAL Baseline sd SD 1.464
3 TRTA Placebo AVAL Baseline median Median 141
4 TRTA Placebo AVAL Baseline min Min 140
5 TRTA Placebo AVAL Baseline max Max 144
6 TRTA Placebo AVAL Week 2 mean Mean 140.571
7 TRTA Placebo AVAL Week 2 sd SD 1.618
8 TRTA Placebo AVAL Week 2 median Median 141
9 TRTA Placebo AVAL Week 2 min Min 138
10 TRTA Placebo AVAL Week 2 max Max 142
Message
i 610 more rows
i Use `print(n = ...)` to see more rows
i 5 more variables: context, fmt_fun, warning, error, gts_column
Output
$add_overall
Message
{cards} data frame: 229 x 10
Output
variable variable_level context stat_name stat_label stat
1 AVAL Baseline summary mean Mean 139.95
2 AVAL Baseline summary sd SD 2.781
3 AVAL Baseline summary median Median 140
4 AVAL Baseline summary min Min 134
5 AVAL Baseline summary max Max 145
6 AVAL Week 2 summary mean Mean 139.684
7 AVAL Week 2 summary sd SD 2.428
8 AVAL Week 2 summary median Median 140
9 AVAL Week 2 summary min Min 133
10 AVAL Week 2 summary max Max 142
Message
i 219 more rows
i Use `print(n = ...)` to see more rows
i 4 more variables: fmt_fun, warning, error, gts_column
Output
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.