crisp: Fits a Model that Partitions the Covariate Space into Blocks in a Data- Adaptive Way

Implements convex regression with interpretable sharp partitions (CRISP), which considers the problem of predicting an outcome variable on the basis of two covariates, using an interpretable yet non-additive model. CRISP partitions the covariate space into blocks in a data-adaptive way, and fits a mean model within each block. Unlike other partitioning methods, CRISP is fit using a non-greedy approach by solving a convex optimization problem, resulting in low-variance fits. More details are provided in Petersen, A., Simon, N., and Witten, D. (2016). Convex Regression with Interpretable Sharp Partitions. Journal of Machine Learning Research, 17(94): 1-31 <http://jmlr.org/papers/volume17/15-344/15-344.pdf>.

Package details

AuthorAshley Petersen
MaintainerAshley Petersen <[email protected]>
LicenseGPL (>= 2)
Version1.0.0
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:
install.packages("crisp")

Try the crisp package in your browser

Any scripts or data that you put into this service are public.

crisp documentation built on May 29, 2017, 3:53 p.m.