Nothing
## ----setup, include = FALSE----------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
warning=FALSE
)
## ----eval=FALSE----------------------------------------------------------
# library("devtools")
# devtools::install_github("jhudsl/crsra", build_vignettes = TRUE)
## ----eval=FALSE----------------------------------------------------------
# my_import <- crsra_import(workdir = ".", check_problems = TRUE)
## ----eval=FALSE----------------------------------------------------------
# user_table <- my_import[["Regression Models"]][["users"]]
## ----eval=FALSE----------------------------------------------------------
# library(dplyr)
# user_table <- my_import %>%
# .[["Regression Models"]] %>%
# .[["users"]]
## ----eval=FALSE----------------------------------------------------------
# my_course_import <- crsra_import_course(workdir = ".", check_problems = TRUE)
## ----eval=FALSE----------------------------------------------------------
# user_table_2 <- my_course_import[["users"]]
## ----eval=FALSE----------------------------------------------------------
# library(dplyr)
# user_table_2 <- my_course_import %>%
# .[["users"]]
## ----eval=FALSE----------------------------------------------------------
# my_import %>%
# .[["Regression Models"]] %>%
# .[["course_item_grades"]] %>%
# filter(course_item_id == "67c1O") %>%
# filter(course_item_passing_state_id == 2) %>%
# summarise(n = n())
#
# # A tibble: 1 x 1
# # n
# # <int>
# # 1 8640
## ----eval=FALSE----------------------------------------------------------
# crsra_gradesummary(my_import, groupby = "gender") %>%
# .[["Regression Models"]]
#
# #Note that maximum grade possible is 1.
# # A tibble: 2 x 2
# # reported_or_inferred_gender AvgGrade
# # <chr> <dbl>
# #1 male 0.7250660
# #2 female 0.6691554
## ----eval=FALSE----------------------------------------------------------
# ttf <- crsra_timetofinish(my_import)
## ---- eval=FALSE---------------------------------------------------------
# ttf_status <- ttf %>%
# .[["Getting and Cleaning Data"]] %>%
# left_join(my_import[["Getting and Cleaning Data"]][["users"]],
# by = "jhu_user_id", `copy`=TRUE) %>%
# filter(!is.na(student_status))
## ----eval=FALSE----------------------------------------------------------
# passed_items <- my_import %>%
# .[["Getting and Cleaning Data"]] %>%
# .[["course_progress"]] %>%
# group_by(jhu_user_id) %>%
# # 604800 is the number of seconds in a week
# filter(course_progress_ts <= min(course_progress_ts) + 604800) %>%
# summarise(nweek1 = n())
## ----eval=FALSE----------------------------------------------------------
# gaps <- my_import %>%
# .[["Getting and Cleaning Data"]] %>%
# .[["course_progress"]] %>%
# # 2 is an indicator that the course item is completed
# filter(course_progress_state_type_id == 2) %>%
# group_by(jhu_user_id, course_item_id) %>%
# # This is for keeping only the latest event for each course item
# filter(course_progress_ts == max(course_progress_ts)) %>%
# ungroup() %>%
# arrange(jhu_user_id, course_progress_ts) %>%
# group_by(jhu_user_id) %>%
# # This is for converting the time gap to hours
# mutate(time.dif = as.numeric(course_progress_ts -
# lag(course_progress_ts))/3600) %>%
# filter(!is.na(time.dif)) %>%
# filter(time.dif != Inf | time.dif != -Inf)
## ----eval=FALSE----------------------------------------------------------
# gaps_payment <- gaps %>%
# group_by(jhu_user_id) %>%
# summarise(avgtime = mean(time.dif)) %>%
# inner_join(my_import[["Getting and Cleaning Data"]][["course_grades"]],
# by = "jhu_user_id", `copy`=TRUE) %>%
# filter(course_passing_state_id %in% c(1, 2)) %>%
# left_join(
# my_import[["Getting and Cleaning Data"]][["users_courses__certificate_payments"]],
# by = "jhu_user_id", `copy`=TRUE) %>%
# filter(!is.na(was_payment)) %>%
# group_by(was_payment) %>%
# summarise(avggap=mean(avgtime))
## ----eval=FALSE----------------------------------------------------------
# passed_items_policy <- passed_items %>%
# left_join(my_import[["Getting and Cleaning Data"]][["course_memberships"]],
# by = "jhu_user_id", `copy`=TRUE) %>%
# filter(!is.na(course_membership_ts)) %>%
# mutate(subscription = ifelse(course_membership_ts < "2016-11-01 00:00:00",
# "before", "after")) %>%
# group_by(subscription) %>%
# summarise(subnw = mean(nweek1))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.