Perform state and parameter inference, and forecasting, in stochastic state-space systems using the 'ctsmTMB' class. This class, built with the 'R6' package, provides a user-friendly interface for defining and handling state-space models. Inference is based on maximum likelihood estimation, with derivatives efficiently computed through automatic differentiation enabled by the 'TMB'/'RTMB' packages (Kristensen et al., 2016) <doi:10.18637/jss.v070.i05>. The available inference methods include Kalman filters, in addition to a Laplace approximation-based smoothing method. For further details of these methods refer to the documentation of the 'CTSMR' package <https://ctsm.info/ctsmr-reference.pdf> and Thygesen (2025) <doi:10.48550/arXiv.2503.21358>. Forecasting capabilities include moment predictions and stochastic path simulations, both implemented in 'C++' using 'Rcpp' (Eddelbuettel et al., 2018) <doi:10.1080/00031305.2017.1375990> for computational efficiency.
Package details |
|
---|---|
Author | Phillip Vetter [aut, cre, cph], Jan Møller [ctb], Uffe Thygesen [ctb], Peder Bacher [ctb], Henrik Madsen [ctb] |
Maintainer | Phillip Vetter <pbrve@dtu.dk> |
License | GPL-3 |
Version | 1.0.0 |
URL | https://github.com/phillipbvetter/ctsmTMB |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.