plot.ctsmTMB.fit | R Documentation |
This function creates residual plots for an estimated ctsmTMB object
## S3 method for class 'ctsmTMB.fit'
plot(
x,
print.plot = 1,
type = "residuals",
state.type = "prior",
against.obs = NULL,
ggtheme = getggplot2theme(),
ylims = c(NA, NA),
residual.burnin = 0L,
residual.vs.obs.and.inputs = FALSE,
...
)
x |
A R6 ctsmTMB fit object |
print.plot |
a single integer determining which element out of all
states/observations (depending on the argument to |
type |
a character vector either 'residuals' or 'states' determining what to plot. |
state.type |
a character vector either 'prior', 'posterior' or 'smoothed' determining what kind of states to plot. |
against.obs |
name of an observation to plot state predictions against. |
ggtheme |
ggplot2 theme to use for creating the ggplot. |
ylims |
limits on the y-axis for residual time-series plot |
residual.burnin |
integer N to remove the first N residuals |
residual.vs.obs.and.inputs |
the residual plots also include a new window with time-series plots of residuals, associated observations and inputs |
... |
additional arguments |
a (list of) ggplot residual plot(s)
library(ctsmTMB)
model <- ctsmTMB$new()
# create model
model$addSystem(dx ~ theta * (mu+u-x) * dt + sigma_x*dw)
model$addObs(y ~ x)
model$setVariance(y ~ sigma_y^2)
model$addInput(u)
model$setParameter(
theta = c(initial = 1, lower=1e-5, upper=50),
mu = c(initial=1.5, lower=0, upper=5),
sigma_x = c(initial=1, lower=1e-10, upper=30),
sigma_y = 1e-2
)
model$setInitialState(list(1,1e-1))
# fit model to data
fit <- model$estimate(Ornstein)
# plot residuals
## Not run: plot(fit)
# plot filtered states
## Not run: plot(fit, type="states")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.