Nothing
#' @title predcall_wei function
#'
#' @description calculates the predicted cure indicators from a mixture cure
#' model with the survival of uncured specified by a Weibull distribution.
#'
#'
#' @param object ouput from a model implemented using curesurv
#'
#' @param pred some predicted estimates
#'
#' @param z_ucured covariates matrix acting on survival function of uncured
#'
#' @param z_pcured covariates matrix acting on cure proportion
#'
#' @param x time at which the predictions are provided
#'
#' @param level (1-alpha/2)-order quantile of a normal distribution
#'
#' @param epsilon value fixed by user to estimate the TTC \eqn{\text{Pi}(t)\geq (1-\epsilon)}.
#' By default \eqn{\epsilon = 0.05}.
#'
#' @param sign_delta only used for mixture cure rate models to specify if the
#' effects or minus the effects of covariates acting on uncured survival to be
#' considered. Default will be sign_delta = "1". The alternative is
#' sign_delta = "-1".
#'
#' @param cumLexctopred pre prediction obtained by cumLexc_alphaweibull_topred
#'
#'
#' @author Juste Goungounga, Judith Breaud, Olayide Boussari, Laura Botta, Valerie Jooste
#'
#' @references Boussari O, Bordes L, Romain G, Colonna M, Bossard N, Remontet L,
#' Jooste V. Modeling excess hazard with time-to-cure as a parameter.
#' Biometrics. 2021 Dec;77(4):1289-1302. doi: 10.1111/biom.13361.
#' Epub 2020 Sep 12. PMID: 32869288.
#' (\href{https://pubmed.ncbi.nlm.nih.gov/32869288/}{pubmed})
#'
#'
#' Boussari O, Romain G, Remontet L, Bossard N, Mounier M, Bouvier AM,
#' Binquet C, Colonna M, Jooste V. A new approach to estimate time-to-cure from
#' cancer registries data. Cancer Epidemiol. 2018 Apr;53:72-80.
#' doi: 10.1016/j.canep.2018.01.013. Epub 2018 Feb 4. PMID: 29414635.
#' (\href{https://pubmed.ncbi.nlm.nih.gov/29414635/}{pubmed})
#'
#'
#' Phillips N, Coldman A, McBride ML. Estimating cancer prevalence using
#' mixture models for cancer survival. Stat Med. 2002 May 15;21(9):1257-70.
#' doi: 10.1002/sim.1101. PMID: 12111877.
#' (\href{https://pubmed.ncbi.nlm.nih.gov/12111877/}{pubmed})
#'
#'
#' De Angelis R, Capocaccia R, Hakulinen T, Soderman B, Verdecchia A. Mixture
#' models for cancer survival analysis: application to population-based data
#' with covariates. Stat Med. 1999 Feb 28;18(4):441-54.
#' doi: 10.1002/(sici)1097-0258(19990228)18:4<441::aid-sim23>3.0.co;2-m.
#' PMID: 10070685.
#' (\href{https://pubmed.ncbi.nlm.nih.gov/10070685/}{pubmed})
#'
#' @keywords internal
predcall_wei <- function(object,
pred,
z_pcured = z_pcured,
z_ucured = z_ucured,
x = x,
level = level,
epsilon = epsilon, sign_delta = 1,
cumLexctopred) {
theta <- object$coefficients
pred$time_to_cure_ttc <- TTC_wei(z_pcured = z_pcured,
z_ucured = z_ucured,
theta = object$coefficients,
epsilon = epsilon)
pred$p_ttc <- pt_cure_wei(z_pcured = z_pcured, z_ucured = z_ucured,
x = pred$time_to_cure_ttc, theta = object$coefficients)
cumLexc_topred_TTC<-cumLexc_alphaweibull_topred(z_ucured = z_ucured,
z_pcured = z_pcured,
x = pred$time_to_cure_ttc,
theta, sign_delta = sign_delta)
pred$netsurv_ttc <- exp(-cumLexc_topred_TTC$cumhaz)
Dpt_cure <-dpdtheta_wei(
z_pcured = z_pcured,
z_ucured = z_ucured,
x = x,
theta = object$coefficients,
cumLexctopred
)
pt_ic <- pt_cure_ic_wei(object,
z_pcured = z_pcured,
z_ucured = z_ucured,
x = x,
level = level,cumLexctopred,Dpt_cure)
pred$lower_bound_pt_ic <- pt_ic$lower_bound
pred$upper_bound_pt_ic <- pt_ic$upper_bound
Dpt_cure_TTC <-dpdtheta_wei(
z_pcured = z_pcured,
z_ucured = z_ucured,
x = pred$time_to_cure,
theta = object$coefficients,
cumLexc_topred_TTC
)
pttc_ic <- pt_cure_ic_wei(object, z_pcured = z_pcured,
z_ucured = z_ucured,
x = pred$time_to_cure,
level,cumLexc_topred_TTC,Dpt_cure_TTC)
pred$lower_bound_pttc_ic <- pttc_ic$lower_bound
pred$upper_bound_pttc_ic <- pttc_ic$upper_bound
pt_ic_log <- pt_cure_ic_log_wei(object, z_pcured = z_pcured,
z_ucured = z_ucured,
x= x,
level,cumLexctopred,Dpt_cure)
pred$lower_bound_pt_ic_log <- pt_ic_log$lower_bound
pred$upper_bound_pt_ic_log <- pt_ic_log$upper_bound
pttc_ic_log <- pt_cure_ic_log_wei(object, z_pcured = z_pcured,
z_ucured = z_ucured,
x = pred$time_to_cure,
level,cumLexc_topred_TTC,Dpt_cure_TTC)
pred$lower_bound_pttc_ic_log <- pttc_ic_log$lower_bound
pred$upper_bound_pttc_ic_log <- pttc_ic_log$upper_bound
pt_ic_loglog <- pt_cure_ic_loglog_wei(object, z_pcured = z_pcured,
z_ucured = z_ucured,
x = x,
level,
cumLexctopred,Dpt_cure)
pred$lower_bound_pt_ic_loglog <- pt_ic_loglog$lower_bound
pred$upper_bound_pt_ic_loglog <- pt_ic_loglog$upper_bound
pttc_ic_loglog <- pt_cure_ic_loglog_wei(object, z_pcured = z_pcured,
z_ucured = z_ucured,
x = pred$time_to_cure,
level, cumLexc_topred_TTC,Dpt_cure_TTC)
pred$lower_bound_pttc_ic_loglog <- pttc_ic_loglog$lower_bound
pred$upper_bound_pttc_ic_loglog <- pttc_ic_loglog$upper_bound
Dexhaz<-dexhazdtheta_wei(z_pcured = z_pcured,
z_ucured = z_ucured,
x = x, theta,cumLexctopred)
exhaz_ic <- exhaz_ic_wei(object,
z_pcured = z_pcured,
z_ucured = z_ucured,
x = x,
level,cumLexctopred,Dexhaz,exhaz=pred$ex_haz)
pred$lower_bound_exhaz_ic <- exhaz_ic$lower_bound
pred$upper_bound_exhaz_ic <- exhaz_ic$upper_bound
exhaz_ic_log <- exhaz_ic_wei_log(object,
z_pcured = z_pcured,
z_ucured = z_ucured,
x = x,
level,cumLexctopred,Dexhaz,exhaz=pred$ex_haz)
pred$lower_bound_exhaz_ic_log <- exhaz_ic_log$lower_bound
pred$upper_bound_exhaz_ic_log <- exhaz_ic_log$upper_bound
exhaz_ic_loglog <- exhaz_ic_wei_loglog(object,
z_pcured = z_pcured,
z_ucured = z_ucured,
x = x,
level,cumLexctopred,Dexhaz,exhaz=pred$ex_haz)
pred$lower_bound_exhaz_ic_loglog <- exhaz_ic_loglog$lower_bound
pred$upper_bound_exhaz_ic_loglog <- exhaz_ic_loglog$upper_bound
Dpi<-dpidtheta_wei(
z_ucured = z_ucured,
z_pcured = z_pcured,
x = x,
theta = object$coefficients,
cumLexctopred
)
pi_ic <- pi_ic_wei(object,
z_pcured = z_pcured,
z_ucured = z_ucured,
x = x,
level,cumLexctopred,Dpi)
pred$lower_bound_pi_ic <- pi_ic$lower_bound
pred$upper_bound_pi_ic <- pi_ic$upper_bound
pi_ic_log <- pi_ic_log_wei(object,
z_pcured = z_pcured,
z_ucured = z_ucured,
x = x,
level,cumLexctopred,Dpi)
pred$lower_bound_pi_ic_log <- t(pi_ic_log$lower_bound)
pred$upper_bound_pi_ic_log <- t(pi_ic_log$upper_bound)
pi_ic_loglog <- pi_ic_loglog_wei(object,
z_pcured = z_pcured,
z_ucured = z_ucured,
x = x,
level,cumLexctopred,Dpi)
pred$lower_bound_pi_ic_loglog <- pi_ic_loglog$lower_bound
pred$upper_bound_pi_ic_loglog <- pi_ic_loglog$upper_bound
Dsn<-dsndtheta_wei(
z_ucured = z_ucured,
z_pcured = z_pcured,
x = x,
theta = object$coefficients,
cumLexctopred
)
sn_ic <- sn_ic_wei(object,
z_pcured = z_pcured,
z_ucured = z_ucured,
x = x,
level,cumLexctopred,Dsn)
pred$lower_bound_sn_ic <- sn_ic$lower_bound
pred$upper_bound_sn_ic <- sn_ic$upper_bound
Dsn_TTC<-dsndtheta_wei(
z_ucured = z_ucured,
z_pcured = z_pcured,
x = pred$time_to_cure_ttc,
theta = object$coefficients,
cumLexc_topred_TTC
)
snttc_ic <- sn_ic_wei(object,
z_pcured = z_pcured,
z_ucured = z_ucured,
x = pred$time_to_cure,
level,cumLexc_topred_TTC,Dsn_TTC)
pred$lower_bound_snttc_ic <- snttc_ic$lower_bound
pred$upper_bound_snttc_ic <- snttc_ic$upper_bound
sn_ic_log <- sn_ic_log_wei(object,
z_pcured = z_pcured,
z_ucured = z_ucured,
x = x,
level,cumLexctopred,Dsn)
pred$lower_bound_sn_ic_log <- sn_ic_log$lower_bound
pred$upper_bound_sn_ic_log <- sn_ic_log$upper_bound
snttc_ic_log <- sn_ic_log_wei(object,
z_pcured = z_pcured,
z_ucured = z_ucured,
x = pred$time_to_cure,
level,
cumLexc_topred_TTC,Dsn_TTC)
pred$lower_bound_snttc_ic_log <- snttc_ic_log$lower_bound
pred$upper_bound_snttc_ic_log <- snttc_ic_log$upper_bound
logCumHaz_ic <- logCumHaz_ic_wei(object,
z_pcured = z_pcured,
z_ucured = z_ucured,
x = x,
level,cumLexctopred)
pred$lower_bound_logCumHaz_ic <- logCumHaz_ic$lower_bound
pred$upper_bound_logCumHaz_ic <- logCumHaz_ic$upper_bound
pred$lower_bound_sn_ic_loglog <- exp(-exp(logCumHaz_ic$upper_bound))
pred$upper_bound_sn_ic_loglog <- exp(-exp(logCumHaz_ic$lower_bound))
logCumHazttc_ic <- logCumHaz_ic_wei(object,
z_pcured = z_pcured,
z_ucured = z_ucured,
x = pred$time_to_cure,
level,cumLexc_topred_TTC)
pred$lower_bound_snttc_ic_loglog <- exp(-exp(logCumHazttc_ic$upper_bound))
pred$upper_bound_snttc_ic_loglog <- exp(-exp(logCumHazttc_ic$lower_bound))
Dttc<-dTTCdtheta_wei(z_ucured = z_ucured,
z_pcured = z_pcured,
theta = object$coefficients,
epsilon = epsilon, TTC=pred$time_to_cure_ttc)
TTC_ic <- TTC_ic_wei(object, z_pcured = z_pcured,
z_ucured = z_ucured,
epsilon = epsilon, level,TTC=pred$time_to_cure_ttc,Dttc)
pred$lower_bound_TTC_ic <- TTC_ic$lower_bound
pred$upper_bound_TTC_ic <- TTC_ic$upper_bound
TTC_ic_log <- TTC_ic_log_wei(object, z_pcured = z_pcured,
z_ucured = z_ucured,
epsilon = epsilon, level,TTC=pred$time_to_cure_ttc,Dttc)
pred$lower_bound_TTC_ic_log <- TTC_ic_log$lower_bound
pred$upper_bound_TTC_ic_log <- TTC_ic_log$upper_bound
if(ncol(z_pcured)==0&ncol(z_ucured)==0){
pred$var_TTC_Jakobsen <- var_TTC_Jakobsen_wei(object,
z_ucured = z_ucured,
z_pcured = z_pcured,
epsilon = epsilon,
TTC=pred$time_to_cure_ttc,
cumLexc_topred_TTC)
}else{
pred$var_TTC_Jakobsen <- diag(var_TTC_Jakobsen_wei(object,
z_ucured = z_ucured,
z_pcured = z_pcured,
epsilon = epsilon,
TTC=pred$time_to_cure_ttc,
cumLexc_topred_TTC))
}
pred$var_TTC <- diag(var_TTC_wei(object,
z_ucured = z_ucured,
z_pcured = z_pcured,
epsilon = epsilon,TTC=pred$time_to_cure_ttc))
pred$varlogTTC <- diag(varlogTTC_wei(object,
z_ucured = z_ucured,
z_pcured = z_pcured,
epsilon = epsilon,TTC=pred$time_to_cure_ttc))
if(ncol(z_pcured)==0&ncol(z_ucured)==0){
pred$varlogTTC_Jakobsen <- varlogTTC_Jakobsen_wei(object,
z_ucured = z_ucured,
z_pcured = z_pcured,
epsilon = epsilon,
TTC=pred$time_to_cure_ttc,
cumLexc_topred_TTC)
}else{
pred$varlogTTC_Jakobsen <- diag(varlogTTC_Jakobsen_wei(object,
z_ucured = z_ucured,
z_pcured = z_pcured,
epsilon = epsilon,
TTC=pred$time_to_cure_ttc,
cumLexc_topred_TTC))
}
pred$model <- object$model
pred$dist <- object$dist
pred$epsilon <- epsilon
return(pred)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.