Nothing
#' @title var_TTC_multneh function
#'
#' @description calculates the variance of TTC in a non-mixture model with
#' distribution "TNEH", link_tau="loglinear"
#'
#'
#' @param object ouput from a model implemented in curesurv
#'
#'
#' @param z_alpha Covariates matrix acting on parameter alpha of the density of
#' time-to-null excess hazard model
#'
#' @param z_tau Covariates matrix acting on time-to-null parameter.
#'
#' @param xmax time max at which Pi(t) is calculated.
#'
#' @param epsilon value fixed by user to estimate the TTC \eqn{\text{Pi}(t)\geq (1-\epsilon)}.
#' By default \eqn{\epsilon = 0.05}.
#'
#' @param TTC The time to cure, if NULL it is recalculated
#'
#' @param DpTTC partial derivatives, recalculated if not given
#'
#' @param cumLexctopred pre prediction, calculated if NULL
#'
#' @author Juste Goungounga, Judith Breaud, Olayide Boussari, Laura Botta, Valerie Jooste
#'
#' @references Boussari O, Bordes L, Romain G, Colonna M, Bossard N, Remontet L,
#' Jooste V. Modeling excess hazard with time-to-cure as a parameter.
#' Biometrics. 2021 Dec;77(4):1289-1302. doi: 10.1111/biom.13361.
#' Epub 2020 Sep 12. PMID: 32869288.
#' (\href{https://pubmed.ncbi.nlm.nih.gov/32869288/}{pubmed})
#'
#'
#' Boussari O, Romain G, Remontet L, Bossard N, Mounier M, Bouvier AM,
#' Binquet C, Colonna M, Jooste V. A new approach to estimate time-to-cure from
#' cancer registries data. Cancer Epidemiol. 2018 Apr;53:72-80.
#' doi: 10.1016/j.canep.2018.01.013. Epub 2018 Feb 4. PMID: 29414635.
#' (\href{https://pubmed.ncbi.nlm.nih.gov/29414635/}{pubmed})
#'
#' @keywords internal
var_TTC_multneh <- function(z_alpha, z_tau, xmax, object, epsilon = epsilon,
TTC=NULL,
cumLexctopred=NULL,
DpTTC=NULL) {
if (!inherits(object, "curesurv"))
stop("Primary argument much be a curesurv object")
if(is.null(TTC)){
TTC <-TTC_multneh(z_alpha, z_tau, xmax, object, epsilon = epsilon)$TTC
}
if(is.null(cumLexctopred)){
cumLexctopred<-cumLexc_mul_topred(z_tau,
z_alpha,
x = TTC,
object$coefficient)
}
if(is.null(DpTTC)){
DpTTC<-dpttcdtheta_multneh(z_tau,z_alpha,x = TTC, object,
res_pred=cumLexctopred)
}
theta <- object$coefficients
n_z_tau <- ncol(z_tau)
n_z_alpha <- ncol(z_alpha)
n_z_tau_ad <- n_z_tau - 1
n_z_alpha_ad <- n_z_alpha - 1
alpha0 <- theta[1]
pt_cure <- cumLexctopred$pt_cure
var_pt_cure <- DpTTC %*% object$varcov_star %*% t(DpTTC)
if (n_z_tau == 0 & n_z_alpha == 0) {
alpha <- exp(theta[1])
beta <- exp(theta[2])+1
tau <- exp(theta[3])
}
else if (n_z_tau > 0 & n_z_alpha > 0) {
alpha_k <- theta[2:(n_z_alpha + 1)]
beta <- exp(theta[n_z_alpha + 2])+1
beta2 <- beta
tau0 <- theta[n_z_alpha + 2 + 1]
tau_z <- theta[(n_z_alpha + 2 + 1 + 1):(n_z_alpha + 2 + n_z_tau + 1)]
alpha <- exp(alpha0 + z_alpha %*% alpha_k)
tau <- exp(tau0 + z_tau %*% tau_z)
}
else if (n_z_tau > 0 & n_z_alpha == 0) {
alpha <- exp(theta[1])
beta <- exp(theta[n_z_alpha + 2])+1
tau0 <- theta[n_z_alpha + 2 + 1]
tau_z <- theta[(n_z_alpha + 2 + 1 + 1):(n_z_alpha + 2 + n_z_tau + 1)]
tau <- exp(tau0 + z_tau %*% tau_z)
}
else if (n_z_tau == 0 & n_z_alpha > 0) {
alpha_k <- theta[2:(n_z_alpha + 1)]
beta <- exp(theta[n_z_alpha + 2])+1
tau0 <- theta[n_z_alpha + 2 + 1]
alpha <- exp(alpha0 + z_alpha %*% alpha_k)
tau <- exp(tau0)
}
dpdt <- ((TTC/tau)^(alpha - 1)) * ((1 - (TTC/tau))^(beta - 1)) * pt_cure
var_ttc <- dpdt^(-2) * diag(var_pt_cure)
return(var_ttc)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.