Nothing
# __________________ #< 46cee5975e2599650854199c167237ea ># __________________
# Participant scores ####
#' Participant scores
#'
#' Made-up experiment data with 10 participants and two diagnoses.
#' Test scores for 3 sessions per participant, where participants improve their scores each session.
#'
#' @format A \code{data.frame} with \code{30} rows and \code{5} variables:
#' \describe{
#' \item{participant}{participant identifier, 10 levels}
#' \item{age}{age of the participant, in years}
#' \item{diagnosis}{diagnosis of the participant, either 1 or 0}
#' \item{score}{test score of the participant, on a 0-100 scale}
#' \item{session}{testing session identifier, 1 to 3}
#' }
#'
#' @name participant.scores
#' @docType data
#' @author Ludvig Renbo Olsen, \email{r-pkgs@@ludvigolsen.dk}
#' @keywords data
#' @importFrom utils data
NULL
# __________________ #< b6c73b247744b99379849097e8fb31d9 ># __________________
# Wine varieties ####
#' Wine varieties
#'
#' A list of wine varieties in an approximately Zipfian distribution, ordered by descending frequencies.
#'
#' Based on the wine-reviews (v4) kaggle dataset by Zack Thoutt:
#' https://www.kaggle.com/zynicide/wine-reviews
#'
#' @format A \code{data.frame} with \code{368} rows and \code{1} variable:
#' \describe{
#' \item{Variety}{Wine variety, 10 levels}
#' }
#'
#' @name wines
#' @docType data
#' @author Ludvig Renbo Olsen, \email{r-pkgs@@ludvigolsen.dk}
#' @keywords data
NULL
# __________________ #< 07b8cd91e79d9ef88b399ee7eb9c13b6 ># __________________
# Musicians ####
#' Musician groups
#'
#' Made-up data on 60 musicians in 4 groups for multiclass classification.
#'
#' @format A \code{data.frame} with \code{60} rows and \code{9} variables:
#' \describe{
#' \item{ID}{Musician identifier, 60 levels}
#' \item{Age}{Age of the musician. Between 17 and 66 years.}
#' \item{Class}{The class of the musician. One of \code{"A"}, \code{"B"}, \code{"C"}, and \code{"D"}.}
#' \item{Height}{Height of the musician. Between \code{146} and \code{196} centimeters.}
#' \item{Drums}{Whether the musician plays drums. \code{0} = No, \code{1} = Yes.}
#' \item{Bass}{Whether the musician plays bass. \code{0} = No, \code{1} = Yes.}
#' \item{Guitar}{Whether the musician plays guitar. \code{0} = No, \code{1} = Yes.}
#' \item{Keys}{Whether the musician plays keys. \code{0} = No, \code{1} = Yes.}
#' \item{Vocals}{Whether the musician sings. \code{0} = No, \code{1} = Yes.}
#' }
#'
#' @name musicians
#' @docType data
#' @author Ludvig Renbo Olsen, \email{r-pkgs@@ludvigolsen.dk}
#' @keywords data
#' @seealso predicted.musicians
NULL
# __________________ #< 57249e222977febb757f8e3f7e83d239 ># __________________
# Predicted musician groups ####
#' Predicted musician groups
#'
#' Predictions by 3 classifiers of the 4 classes in the
#' \code{\link[cvms:musicians]{musicians}} dataset.
#' Obtained with 5-fold stratified cross-validation (3 repetitions).
#' The three classifiers were fit using \code{nnet::multinom},
#' \code{randomForest::randomForest}, and \code{e1071::svm}.
#'
#' Used formula: \code{"Class ~ Height + Age + Drums + Bass + Guitar + Keys + Vocals"}
#'
#' @format A \code{data.frame} with \code{540} rows and \code{10} variables:
#' \describe{
#' \item{Classifier}{The applied classifier.
#' One of \code{"nnet_multinom"}, \code{"randomForest"}, and \code{"e1071_svm"}.}
#' \item{Fold Column}{The fold column name. Each is a unique 5-fold split.
#' One of \code{".folds_1"}, \code{".folds_2"}, and \code{".folds_3"}.}
#' \item{Fold}{The fold. \code{1} to \code{5}.}
#' \item{ID}{Musician identifier, 60 levels}
#' \item{Target}{The actual class of the musician.
#' One of \code{"A"}, \code{"B"}, \code{"C"}, and \code{"D"}.}
#' \item{A}{The probability of class \code{"A"}.}
#' \item{B}{The probability of class \code{"B"}.}
#' \item{C}{The probability of class \code{"C"}.}
#' \item{D}{The probability of class \code{"D"}.}
#' \item{Predicted Class}{The predicted class. The argmax of the four probability columns.}
#' }
#'
#' @name predicted.musicians
#' @docType data
#' @author Ludvig Renbo Olsen, \email{r-pkgs@@ludvigolsen.dk}
#' @keywords data
#' @seealso musicians
#' @examples
#' # Attach packages
#' library(cvms)
#' library(dplyr)
#'
#' \donttest{
#' # Evaluate each fold column
#' predicted.musicians %>%
#' dplyr::group_by(Classifier, `Fold Column`) %>%
#' evaluate(target_col = "Target",
#' prediction_cols = c("A", "B", "C", "D"),
#' type = "multinomial")
#'
#' # Overall ID evaluation
#' # I.e. if we average all 9 sets of predictions,
#' # how well did we predict the targets?
#' overall_id_eval <- predicted.musicians %>%
#' evaluate(target_col = "Target",
#' prediction_cols = c("A", "B", "C", "D"),
#' type = "multinomial",
#' id_col = "ID")
#' overall_id_eval
#' # Plot the confusion matrix
#' plot_confusion_matrix(overall_id_eval$`Confusion Matrix`[[1]])
#' }
NULL
# __________________ #< fd40ca54a2ecc06121fe9aa0e3b6d351 ># __________________
# Precomputed formulas ####
#' Precomputed formulas
#'
#' Fixed effect combinations for model formulas with/without two- and three-way interactions.
#' Up to eight fixed effects in total with up to five fixed effects per formula.
#'
#' Effects are represented by the first eight capital letters.
#'
#' Used by \code{\link[cvms:combine_predictors]{combine_predictors}}.
#'
#' @format A \code{data.frame} with \code{259,358} rows and \code{5} variables:
#' \describe{
#' \item{formula_}{combination of fixed effects, separated by "\code{+}" and "\code{*}"}
#' \item{max_interaction_size}{maximum interaction size in the formula, up to \code{3}}
#' \item{max_effect_frequency}{maximum count of an effect in the formula, e.g. the \code{3} A's in \code{"A * B + A * C + A * D"}}
#' \item{num_effects}{number of unique effects included in the formula}
#' \item{min_num_fixed_effects}{minimum number of fixed effects required to use the formula,
#' i.e. the index in the alphabet of the last of the alphabetically ordered effects (letters) in the formula,
#' so \code{4} for the formula: \code{"A + B + D"} }
#' }
#'
#' @name precomputed.formulas
#' @docType data
#' @author Ludvig Renbo Olsen, \email{r-pkgs@ludvigolsen.dk}
#' @keywords data
NULL
# __________________ #< a1c9080fd9157d0da24b06e43f86dc1f ># __________________
# Compatible formula terms ####
#' Compatible formula terms
#'
#' \code{162,660} pairs of compatible terms for building model formulas with up to \code{15} fixed effects.
#'
#' A term is either a fixed effect or an interaction between fixed effects (up to three-way), where
#' the effects are separated by the "\code{*}" operator.
#'
#' Two terms are compatible if they are not redundant,
#' meaning that both add a fixed effect to the formula. E.g. as the interaction
#' \code{"x1 * x2 * x3"} expands to \code{"x1 + x2 + x3 + x1 * x2 + x1 * x3 + x2 * x3 + x1 * x2 * x3"},
#' the higher order interaction makes these "sub terms" redundant. Note: All terms are compatible with \code{NA}.
#'
#' Effects are represented by the first fifteen capital letters.
#'
#' Used to generate the model formulas for \code{\link[cvms:combine_predictors]{combine_predictors}}.
#'
#' @format A \code{data.frame} with \code{162,660} rows and \code{5} variables:
#' \describe{
#' \item{left}{term, fixed effect or interaction, with fixed effects separated by "\code{*}"}
#' \item{right}{term, fixed effect or interaction, with fixed effects separated by "\code{*}"}
#' \item{max_interaction_size}{maximum interaction size in the two terms, up to \code{3}}
#' \item{num_effects}{number of unique fixed effects in the two terms, up to \code{5}}
#' \item{min_num_fixed_effects}{minimum number of fixed effects required to use a formula with the two terms,
#' i.e. the index in the alphabet of the last of the alphabetically ordered effects (letters) in the two terms,
#' so \code{4} if \code{left == "A"} and \code{right == "D"} }
#' }
#'
#' @name compatible.formula.terms
#' @docType data
#' @author Ludvig Renbo Olsen, \email{r-pkgs@ludvigolsen.dk}
#' @keywords data
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.