Nothing
Code
print(some_stats, some = TRUE, print_rows = 3, show_header = FALSE, show_note = FALSE)
Output
Source Cond Bin P_corr
4 pred comp 4 0.983
7 pred incomp 2 0.968
9 pred incomp 4 0.991
...
Code
print(cafs_obj)
Output
Type of Statistic: cafs
Source Cond Bin P_corr
1 pred comp 1 0.982
2 pred comp 2 0.983
3 pred comp 3 0.980
4 pred comp 4 0.983
5 pred comp 5 0.989
6 pred incomp 1 0.825
7 pred incomp 2 0.968
8 pred incomp 3 0.986
9 pred incomp 4 0.991
10 pred incomp 5 0.992
(access the data.frame's columns/rows as usual)
Code
print(quantiles_obj)
Output
Type of Statistic: quantiles
Source Cond Prob Quant_corr Quant_err
1 pred comp 0.1 0.323 0.318
2 pred comp 0.2 0.343 0.340
3 pred comp 0.3 0.362 0.358
4 pred comp 0.4 0.382 0.376
5 pred comp 0.5 0.405 0.395
6 pred comp 0.6 0.431 0.415
7 pred comp 0.7 0.464 0.439
8 pred comp 0.8 0.506 0.472
9 pred comp 0.9 0.574 0.528
10 pred incomp 0.1 0.350 0.298
...
(access the data.frame's columns/rows as usual)
Code
print(delta_funs_obj)
Output
Type of Statistic: delta_funs
Source Prob Quant_corr_comp Quant_corr_incomp Delta_incomp_comp
1 pred 0.1 0.323 0.350 0.027
2 pred 0.2 0.343 0.373 0.030
3 pred 0.3 0.362 0.392 0.030
4 pred 0.4 0.382 0.410 0.028
5 pred 0.5 0.405 0.429 0.024
6 pred 0.6 0.431 0.450 0.019
7 pred 0.7 0.464 0.477 0.013
8 pred 0.8 0.506 0.512 0.006
9 pred 0.9 0.574 0.573 -0.001
Avg_incomp_comp
1 0.336
2 0.358
3 0.377
4 0.396
5 0.417
6 0.441
7 0.470
8 0.509
9 0.573
(access the data.frame's columns/rows as usual)
Code
print(fit_stats_obj)
Output
Type of Statistic: fit_stats
ID Log_Like AIC BIC
1 1 274.725 -543.451 -532.339
2 2 234.308 -462.616 -451.505
(access the data.frame's columns/rows as usual)
Code
print(stats_dm_list_obj)
Output
Element 1, contains fit_stats
ID Log_Like AIC BIC
1 1 274.725 -543.451 -532.339
2 2 234.308 -462.616 -451.505
Element 2, contains quantiles
ID Source Cond Prob Quant_corr Quant_err
1 1 obs null 0.1 0.370 0.360
2 1 obs null 0.2 0.390 0.370
3 1 obs null 0.3 0.410 0.370
4 1 obs null 0.4 0.430 0.370
5 1 obs null 0.5 0.450 0.440
6 1 obs null 0.6 0.470 0.510
7 1 obs null 0.7 0.501 0.510
8 1 obs null 0.8 0.550 0.510
9 1 obs null 0.9 0.637 0.600
10 1 pred null 0.1 0.367 0.367
...
(extract the list's elements as usual, e.g., with $fit_stats)
Code
print(summary_stats)
Output
Type of Statistic: stats_dm
Dependent Variables:
ID Log_Like AIC BIC
Min. :1.0 Min. :382 Min. :-926 Min. :-900
1st Qu.:1.5 1st Qu.:396 1st Qu.:-865 1st Qu.:-839
Median :2.0 Median :409 Median :-804 Median :-778
Mean :2.0 Mean :421 Mean :-827 Mean :-800
3rd Qu.:2.5 3rd Qu.:440 3rd Qu.:-777 3rd Qu.:-751
Max. :3.0 Max. :470 Max. :-750 Max. :-724
N IDs: 3
Code
print(summary_stats)
Output
Type of Statistic: sum_dist
Dependent Variables:
Source Cond Bin P_corr
Length:10 Length:10 Min. :1 Min. :0.825
Class :character Class :character 1st Qu.:2 1st Qu.:0.981
Mode :character Mode :character Median :3 Median :0.983
Mean :3 Mean :0.968
3rd Qu.:4 3rd Qu.:0.988
Max. :5 Max. :0.992
Sources: pred
Code
print(summary_stats)
Output
Type of Statistic: cafs
Dependent Variables:
P_corr
Min. :0.96
1st Qu.:0.98
Median :0.98
Mean :0.98
3rd Qu.:0.98
Max. :1.00
N IDs: 2
Sources: obs, pred
Conditions: null
Bins: 1, 2, 3, 4, 5
Code
print(summary_stats)
Output
Type of Statistic: quantiles
Dependent Variables:
Quant_corr Quant_err
Min. :0.285 Min. :0.230
1st Qu.:0.368 1st Qu.:0.335
Median :0.401 Median :0.368
Mean :0.411 Mean :0.376
3rd Qu.:0.451 3rd Qu.:0.410
Max. :0.638 Max. :0.668
NA's :18
N IDs: 16
Sources: obs
Conditions: comp, incomp
Probs: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
Code
print(summary_stats)
Output
Type of Statistic: delta_funs
Dependent Variables:
Quant_corr_comp Quant_corr_incomp Delta_incomp_comp Avg_incomp_comp
Min. :0.323 Min. :0.350 Min. :-0.00072 Min. :0.336
1st Qu.:0.362 1st Qu.:0.392 1st Qu.: 0.01310 1st Qu.:0.377
Median :0.404 Median :0.429 Median : 0.02442 Median :0.417
Mean :0.421 Mean :0.441 Mean : 0.01966 Mean :0.431
3rd Qu.:0.463 3rd Qu.:0.477 3rd Qu.: 0.02813 3rd Qu.:0.470
Max. :0.574 Max. :0.573 Max. : 0.02999 Max. :0.573
Sources: pred
Probs: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
Code
print(summary_stats)
Output
Type of Statistic: fit_stats
Dependent Variables:
Log_Like AIC BIC
Min. :234 Min. :-543 Min. :-532
1st Qu.:244 1st Qu.:-523 1st Qu.:-512
Median :255 Median :-503 Median :-492
Mean :255 Mean :-503 Mean :-492
3rd Qu.:265 3rd Qu.:-483 3rd Qu.:-472
Max. :275 Max. :-463 Max. :-452
N IDs: 2
Code
print(summary_list)
Output
Summary of Element 1: quantiles
Dependent Variables:
Quant_corr Quant_err
Min. :0.323 Min. :0.298
1st Qu.:0.375 1st Qu.:0.331
Median :0.419 Median :0.360
Mean :0.431 Mean :0.375
3rd Qu.:0.473 3rd Qu.:0.410
Max. :0.574 Max. :0.528
Sources: pred
Conditions: comp, incomp
Probs: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
-------
Summary of Element 2: cafs
Dependent Variables:
P_corr
Min. :0.825
1st Qu.:0.981
Median :0.983
Mean :0.968
3rd Qu.:0.988
Max. :0.992
Sources: pred
Conditions: comp, incomp
Bins: 1, 2, 3, 4, 5
-------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.