View source: R/formatting_mcmc_dm.R
| summary.mcmc_dm | R Documentation |
mcmc_dm ObjectsSummary and corresponding print methods for objects of the class mcmc_dm,
resulting from a call to estimate_bayesian(). mcmc_dm
objects contain MCMC samples for Bayesian parameter estimation of
drift_dm() objects. The summary includes basic parameter
statistics, quantiles, Gelman-Rubin diagnostics, and effective sample sizes.
## S3 method for class 'mcmc_dm'
summary(object, ..., id = NULL)
## S3 method for class 'summary.mcmc_dm'
print(
x,
...,
round_digits = drift_dm_default_rounding(),
show_statistics = TRUE,
show_quantiles = FALSE,
show_gr = TRUE,
show_eff_n = TRUE
)
object |
an object of class |
... |
additional arguments passed forward to
|
id |
optional single numeric or character, specifying one or more
participant IDs to subset |
x |
an object of class |
round_digits |
an integer, defining the number of digits for rounding the output. |
show_statistics |
a logical, if |
show_quantiles |
a logical, if |
show_gr |
a logical; if |
show_eff_n |
a logical, if |
The summary and diagnostic statistics of the MCMC chains are obtained
using the R package coda.
summary.mcmc_dm() returns an object of class summary.mcmc_dm,
which is a list with the following entries:
general: General information about the MCMC run.
statistics: Basic parameter summary statistics.
quantiles: Quantiles for each parameter.
gr: Gelman-Rubin diagnostics.
eff_n: Effective sample sizes.
print.summary.mcmc_dm() prints selected summary components and returns the
input object invisibly.
coda::gelman.diag(), coda::effectiveSize(),
coda::summary.mcmc.list()
mcmc_obj <- get_example_fits("mcmc_dm")
print(mcmc_obj)
summary(mcmc_obj)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.