ProbitLogLik | R Documentation |
Given a design matrix and vector of binary responses, this function evaluates the log-likelihood function for the Probit regression model.
ProbitLogLik(beta.hat, X, y)
beta.hat |
A vector of length p. The current estimates of the regression parameters. |
X |
The n x p design matrix for the Probit regression model. |
y |
Vector of length n containing binary outcomes (either 0 or 1). |
A scalar - the value of the log-likelihood at beta.hat.
Nicholas Henderson
ProbitSimulate
, ProbitUpdate
n <- 200 npars <- 5 true.beta <- .5*rt(npars, df=2) + 2 XX <- matrix(rnorm(n*npars), nrow=n, ncol=npars) yy <- ProbitSimulate(true.beta, XX) initial.beta <- rep(0.0, npars) ll <- ProbitLogLik(initial.beta, XX, yy)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.