Description Usage Arguments Details References See Also Examples
Generic shell function that calls a plotting function in order to produce a marginal distribution plot for a variable (or for each variable in a dataset). What type of plot is made might depend on the data class of the variable.
1 | visualize(v, vnam = NULL, visuals = setVisuals(), doEval = TRUE, ...)
|
v |
The variable (vector) or dataset (data.frame) which is to be plotted. |
vnam |
The name of the variable. This name might be printed on the plots, depending on the
choice of plotting function. If not supplied, it will default to the name of |
visuals |
A list of visual functions to use on each supported variable type. We recommend
using |
doEval |
A logical. If |
... |
Additional arguments used for class-specific choices of visual functions (see details). |
Visual functions can be supplied using their names (in character strings) using
setVisuals
. Note that only a single visual function is allowed for each variable class.
The default visual settings can be inspected by calling setVisuals()
.
An overview of all available visualFunction
s can be obtained by calling
allVisualFunctions
.
A user defined visual function can be supplied using its function name. Details on how
to construct valid visual functions are found in visualFunction
.
Petersen AH, Ekstrøm CT (2019). “dataMaid: Your Assistant for Documenting Supervised Data Quality Screening in R.” _Journal of Statistical Software_, *90*(6), 1-38. doi: 10.18637/jss.v090.i06 ( doi: 10.18637/jss.v090.i06).
setVisuals
, allVisualFunctions
,
standardVisual
, basicVisual
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | #Standard use: Return standalone code for plotting a function:
visualize(c(1:10), "Variable 1", doEval = FALSE)
#Define a new visualization function and call it using visualize either
#using allVisual or a class specific argument:
mosaicVisual <- function(v, vnam, doEval) {
thisCall <- call("mosaicplot", table(v), main = vnam, xlab = "")
if (doEval) {
return(eval(thisCall))
} else return(deparse(thisCall))
}
mosaicVisual <- visualFunction(mosaicVisual,
description = "Mosaicplots from graphics",
classes = allClasses())
#Inspect all options for visualFunctions:
allVisualFunctions()
#set mosaicVisual for all variable types:
visualize(c("1", "1", "1", "2", "2", "a"), "My variable",
visuals = setVisuals(all = "mosaicVisual"))
#set mosaicVisual only for character variables:
visualize(c("1", "1", "1", "2", "2", "a"), "My variable",
visuals = setVisuals(character = "mosaicVisual"))
#this will use standardVisual, as our variable is not numeric:
visualize(c("1", "1", "1", "2", "2", "a"), "My variable",
visuals = setVisuals(numeric = "mosaicVisual"))
#return code for a mosaic plot
visualize(c("1", "1", "1", "2", "2", "a"), "My variable",
allVisuals = "mosaicVisual", doEval=FALSE)
#Produce multiple plots easily by calling visualize on a full dataset:
data(testData)
testData2 <- testData[, c("charVar", "factorVar", "numVar", "intVar")]
visualize(testData2)
#When using visualize on a dataset, datatype specific arguments have no
#influence:
visualize(testData2, setVisuals(character = "basicVisual",
factor = "basicVisual"))
#But we can still use the "all" argument in setVisuals:
visualize(testData2, visuals = setVisuals(all = "basicVisual"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.