Nothing
#' @title Create an object of class checkFunction
#'
#' @description Convert a function, \code{f}, into an S3
#' \code{checkFunction} object. This adds \code{f} to the
#' overview list returned by an \code{allCheckFunctions()}
#' call.
#'
#' @param f A function. See details and examples below for the
#' exact requirements of this function.
#'
#' @param description A character string describing the check
#' performed by \code{f}. If \code{NULL} (the default), the
#' name of \code{f} will be used instead.
#'
#' @param classes The classes for which \code{f} is intended to
#' be called. If \code{NULL} (the default), one of two things happens.
#' If \code{f} is not a S3 generic function, the \code{classes}
#' attribute of \code{f} will be an empty character string. If
#' \code{f} is a S3 generic function, an automatic look-up
#' for methods will be conducted, and the \code{classes} attribute
#' will then be filled out automatically. Note that the function
#' \code{\link{allClasses}} (listing all classes used in \code{dataReporter})
#' might be useful.
#'
#' @return A function of class \code{checkFunction} which has to attributes,
#' namely \code{classes} and \code{description}.
#'
#' @details \code{checkFunction} represents the functions used in
#' \code{\link{check}} and \code{\link{makeDataReport}} for performing
#' error checks and quality control on variables in dataset.
#'
#' An example of defining a new \code{checkFunction} is given below.
#' Note that the minimal requirements for such a function (in order for it to be
#' compatible with \code{check()} and \code{makeDataReport()}) is the following
#' input/output-structure: It must input at least two arguments, namely
#' \code{v} (a vector variable) and \code{...}. Additional implemented
#' arguments from \code{check()} and \code{makeDataReport()} include \code{nMax} and
#' \code{maxDecimals}, see e.g. the pre-defined \code{checkFunction}
#' \code{\link{identifyMissing}} for more details about how these arguments should
#' be used.
#' The output must be a list with at least the two entries \code{$problem}
#' (a logical indicating whether a problem was found) and \code{$message}
#' (a character string message describing the problem). However, if the
#' result of a \code{checkFunction} is furthermore appended with a
#' \code{$problemValues} entry (including the values from the variable
#' that caused the problem, if relevant) and converted to a
#' \code{\link{checkResult}} object, a \code{print()} method also becomes
#' available for consistent formatting of \code{checkFunction} results.
#'
#' Note that all available \code{checkFunction}s are listed by the call
#' \code{allCheckFunctions()} and we recommed looking into these function,
#' if more knowledge about \code{checkFunction}s is required.
#'
#' @include makeXFunction.R messageGenerator.R
#'
#' @seealso \code{\link{allCheckFunctions}}, \code{\link{check}}, \code{\link{makeDataReport}},
#' \code{\link{messageGenerator}}, \code{\link{checkResult}}
#'
#' @examples
#'
#' #Define a minimal requirement checkFunction that can be called
#' #from check() and makeDataReport(). This function checks whether all
#' #values in a variable are of equal length and that this
#' #length is then also larger than 10:
#' isID <- function(v, nMax = NULL, ...) {
#' out <- list(problem = FALSE, message = "")
#' if (class(v) %in% c("character", "factor", "labelled", "haven_labelled", "numeric", "integer")) {
#' v <- as.character(v)
#' lengths <- nchar(v)
#' if (all(lengths > 10) & length(unique(lengths)) == 1) {
#' out$problem <- TRUE
#' out$message <- "Warning: This variable seems to contain ID codes!"
#' }
#' }
#' out
#' }
#'
#' #Convert it into a checkFunction
#' isID <- checkFunction(isID, description = "Identify ID variables (long, equal length values)",
#' classes = allClasses())
#'
#' #Call isID
#' isID(c("12345678901", "23456789012", "34567890123", "45678901234"))
#'
#' #isID now appears in a allCheckFunctions() call:
#' allCheckFunctions()
#'
#'
#' #Define a new checkFunction using messageGenerator() for generating
#' #the message and checkResult() for getting a printing method
#' #for its output. This function identifies values in a variable
#' #that include a colon, surrounded by alphanumeric characters. If
#' #at least one such value is found, the variable is flagged as
#' #having a problem:
#' identifyColons <- function(v, nMax = Inf, ... ) {
#' v <- unique(na.omit(v))
#' problemMessage <- "Note: The following values include colons:"
#' problem <- FALSE
#' problemValues <- NULL
#' problemValues <- v[sapply(gregexpr("[[:xdigit:]]:[[:xdigit:]]", v),
#' function(x) all(x != -1))]
#' if (length(problemValues) > 0) {
#' problem <- TRUE
#' }
#' problemStatus <- list(problem = problem,
#' problemValues = problemValues)
#' outMessage <- messageGenerator(problemStatus, problemMessage, nMax)
#' checkResult(list(problem = problem,
#' message = outMessage,
#' problemValues = problemValues))
#' }
#'
#' #Make it a checkFunction:
#' identifyColons <- checkFunction(identifyColons,
#' description = "Identify non-suffixed nor -prefixed colons",
#' classes = c("character", "factor", "labelled", "haven_labelled"))
#'
#' #Call it:
#' identifyColons(1:100)
#' identifyColons(c("a:b", 1:10, ":b", "a:b:c:d"))
#'
#' #identifyColons now appears in a allCheckFunctions() call:
#' allCheckFunctions()
#'
#' #Define a checkFunction that looks for negative values in numeric
#' #or integer variables:
#' identifyNeg <- function(v, nMax = Inf, maxDecimals = 2, ...) {
#' problem <- FALSE
#' problemValues <- printProblemValues <- NULL
#' problemMessage <- "Note: The following negative values were found:"
#' negOcc <- unique(v[v < 0])
#' if (length(negOcc > 0)) {
#' problemValues <- negOcc
#' printProblemValues <- round(negOcc, maxDecimals)
#' problem <- TRUE
#' }
#' outMessage <- messageGenerator(list(problem = problem,
#' problemValues = printProblemValues), problemMessage, nMax)
#' checkResult(list(problem = problem,
#' message = outMessage,
#' problemValues = problemValues))
#' }
#'
#' #Make it a checkFunction
#' identifyNeg <- checkFunction(identifyNeg, "Identify negative values",
#' classes = c("integer", "numeric"))
#'
#' #Call it:
#' identifyNeg(c(0:100))
#' identifyNeg(c(-20.1232323:20), nMax = 3, maxDecimals = 4)
#'
#' #identifyNeg now appears in a allCheckFunctions() call:
#' allCheckFunctions()
#'
#' @export
checkFunction <- function(f, description = NULL, classes = NULL) {
f <- deparse(substitute(f))
makeXFunction(f, description, classes, "checkFunction")
}
#to do: change it such that a checkFunction is constructed e.g. like
# foo <- checkFunction(.description, x) {
# x + 2
#}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.