Nothing
#' @name lackinfo.int
#' @title Lack of information questionnaire interval dataset.
#' @description
#' Lack of information questionnaire interval dataset generated from lackinfo dataset.
#' A dataset containing some biographical data and the responses
#' to 5 items measuring the perception of lack of information in
#' a questionnaire.
#'
#' @details
#' An educational innovation project was carried out for improving
#' teaching-learning processes at the University of Oviedo (Spain)
#' for the 2020/2021 academic year. A total of 50 students have been
#' requested to answer an online questionnaire about some biographical
#' data (sex and age) and their perception of lack of information by selecting the
#' interval that best represents their level of agreement to the
#' statements proposed in a interval-valued scale bounded between 1 and 7,
#' where 1 represents the option 'strongly disagree' and 7 represents the option
#' 'strongly agree'.
#'
#' These are the 5 items used to measure the perception of lack of information:
#' \itemize{
#' \item I1: I receive too little information from my classmates.
#' \item I2: It is difficult to receive relevant information from my classmates.
#' \item I3: It is difficult to receive relevant information from the teacher.
#' \item I4: The amount of information I receive from my classmates is very low.
#' \item I5: The amount of information I receive from the teacher is very low.
#' }
#'
#' @usage data(lackinfo.int)
#' @format
#' A data frame with 50 observations of the following 8 variables:
#' \itemize{
#' \item \code{id}: identification number.
#' \item \code{sex}: sex of the respondent (\code{male} or \code{female}).
#' \item \code{age}: respondent's age (in years).
#' \item \code{item1}: respondent's interval-valued answer to item 1.
#' \item \code{item2}: respondent's interval-valued answer to item 2.
#' \item \code{item3}: respondent's interval-valued answer to item 3.
#' \item \code{item4}: respondent's interval-valued answer to item 4.
#' \item \code{item5}: respondent's interval-valued answer to item 5.
#' }
#'
#' @examples
#' data(lackinfo.int)
#' @keywords datasets
#' @source \url{https://CRAN.R-project.org/package=IntervalQuestionStat}
"lackinfo.int"
#' @name ohtemp.int
#' @title 30 year trimmed mean daily temperatures interval dataset for the Ohio river basin.
#' @description
#' 30 year trimmed mean daily temperatures interval dataset for the Ohio river basin generated from ohtemp dataset.
#' Intervals are defined by the mean daily maximum and minimum temperatures for
#' the Ohio river basin from January 1, 1988 - December 31, 2018. The 116
#' observations in this dataset all had at least 300 daily observations of
#' temperature in at least 30 of the 31 considered years. The mean was
#' calculated after trimming 10% of the data in the tails to remove the
#' influence of potential outliers.
#' @usage data(ohtemp.int)
#' @format A data frame with 161 rows and 7 variables:
#' \itemize{
#' \item \code{ID}: The global historical climatological network (GHCN) station identifier
#' \item \code{NAME}: The GHCN station name
#' \item \code{STATE}: The two-digit designation for the state in which each station resides
#' \item \code{LATITUDE}: Latitude coordinate position
#' \item \code{LONGITUDE}: Longitude coordinate position
#' \item \code{ELEVATION}: Elevation of the measurement location (meters)
#' \item \code{TEMPERATURE}: The 30 year mean daily temperature (tenths of degrees Celsius)
#' }
#' @examples
#' data(ohtemp.int)
#' @keywords datasets
#' @source \url{https://CRAN.R-project.org/package=intkrige}
"ohtemp.int"
#' @name soccer.bivar.int
#' @title Soccer bivar Interval Data Set
#' @description
#' Soccer bivar interval dataset generated from soccer.bivar dataset.
#' A real interval-valued data set.
#'
#' @format A data frame with 20 rows and 3 variables:
#' \itemize{
#' \item \code{y}: The response variable Y (weight)
#' \item \code{t1}: The explanatory variable T1 (height)
#' \item \code{t2}: The explanatory variable T2 (age)
#' }
#'
#' @details This data set concerns the record of the Weight (Y),
#' Height (T1) and Age (T2) from 20 soccer teams of the premiere French championship.
#'
#' @references
#' Lima Neto, E. A., Cordeiro, G. and De Carvalho, F.A.T. (2011).
#' Bivariate symbolic regression models for interval-valued variables.
#' Journal of Statistical Computation and Simulation (Print), 81, 1727–1744.
#' @examples
#' data(soccer.bivar.int)
#' @keywords datasets
#' @source \url{https://CRAN.R-project.org/package=iRegression}
"soccer.bivar.int"
#' @name Cars.int
#' @title Cars Interval Dataset
#' @description
#' Cars Interval Dataset generated from Cars dataset.
#' This data set consist of the intervals for four characteristics
#' (Price, EngineCapacity, TopSpeed and Acceleration) of 27 cars models partitioned into
#' four different classes (Utilitarian, Berlina, Sportive and Luxury).
#' @format
#' A data frame containing 27 observations on 5 variables, the first five with the interval
#' characteristics for 27 car models, the last one a factor indicating the model class.
#' @usage data(Cars.int)
#' @examples
#' data(Cars.int)
#' @keywords datasets
#' @source \url{https://CRAN.R-project.org/package=MAINT.Data}
"Cars.int"
#' @name ChinaTemp.int
#' @title China Temperatures Interval Dataset
#' @description
#' China Temperatures Interval Dataset generated from ChinaTemp dataset.
#' This data set consist of the intervals of observed temperatures (Celsius scale) in
#' each of the four quarters, Q_1 to Q_4, of the years 1974 to 1988 in 60 chinese
#' meteorologic stations; one outlier observation (YinChuan_1982) has been discarded.
#' The 60 stations belong to different regions in China,
#' which therefore define a partition of the 899 stations-year combinations.
#' @format
#' A data frame containing 899 observations on 5 variables, the first four with the temperatures by quarter in the 899 stations-year
#' combinations, the last one a factor indicating the geographic region of each station.
#' @usage data(ChinaTemp.int)
#' @examples
#' data(ChinaTemp.int)
#' @keywords datasets
#' @source \url{https://CRAN.R-project.org/package=MAINT.Data}
"ChinaTemp.int"
#' @name LoansbyPurpose.int
#' @title Loans by purpose: Interval Dataset
#' @description
#' Loans by purpose interval dataset generated from LoansbyPurpose dataset.
#' This data set consist of the lower and upper bounds of the intervals for four
#' interval characteristics of the loans aggregated by their purpose.
#' The original microdata is available at the Kaggle Data Science platform and consists
#' of 887 383 loan records characterized by 75 descriptors.
#' Among the large set of variables available, we focus on borrowers'
#' income and account and loan information aggregated by the 14 loan purposes, wich are
#' considered as the units of interest.
#'
#' @format A data frame containing 14 observations on the following 4 variables:
#' \itemize{
#' \item \code{ln-inc}: The current loan purpose of natural logarithm of the self-reported annual income provided by the borrower during registration
#' \item \code{ln-revolbal}: The current loan purpose of natural logarithm of the total credit revolving balance
#' \item \code{open-acc}: The current loan purpose of the number of open credit lines in the borrower's credit file
#' \item \code{total-acc}: The current loan purpose, of the total number of credit lines currently in the borrower's credit file
#' }
#'
#' @usage data(LoansbyPurpose.int)
#' @examples
#' data(LoansbyPurpose.int)
#' @keywords datasets
#' @source
#' \url{https://CRAN.R-project.org/package=MAINT.Data}
"LoansbyPurpose.int"
#' @name nycflights.int
#' @title New York City flights Interval Dataset
#' @description
#' New York City flights interval dataset generated from nycflights dataset.
#' A interval-valued data set containing 142 units and four interval-valued variables
#' (dep_delay, arr_delay, air_time and distance), created from from the flights data set in the R package
#' nycflights13 (on-time data for all flights that departed the JFK, LGA or EWR airports in 2013), after
#' removing all rows with missing observations, and aggregating by month and carrier.
#' @format
#'
#' \describe{
#' \item{FlightsDF}{A data frame containing the original 327346 valid (i.e. with non missing values) flights from the nycflights13 package, described by the 4 variables: dep_delay, arr_delay, air_time and distance.}
#' \item{FlightsUnits}{A factor with 327346 observations and 142 levels, indicating the month by carrier combination to which each orginal flight belongs to.}
#' \item{FlightsIdt}{An IData object with 142 observations and 4 interval-valued variables, describing the intervals formed by agregating the FlightsDF microdata by the 0.05 and 0.95 quantiles of the subsamples formed by FlightsUnits factor.}
#'
#' }
#' @usage data(nycflights.int)
#' @references Duarte Silva, A. P., Brito, P., Filzmoser, P., & Dias, J. G. (2021). MAINT. Data: Modelling
#' and Analysing Interval Data in R. R Journal, 13(2).
#' @examples
#' data(nycflights.int)
#' @keywords datasets
#' @source
#' \url{https://CRAN.R-project.org/package=MAINT.Data}
"nycflights.int"
#' @name mushroom
#' @title Mushroom Data Set
#' @description The mushroom data set consists of a set of 23 species described by 3 interval variables.
#' These mushroom species are members of the genus Agaricies.
#' The specific variables and their values are extracted from the Fungi of California Species.
#'
#' @format A data frame with 23 observations and 5 variables named Species, Pileus Cap
#' Width, Stipe Length, Stipe Thickness, and Edibility.
#'
#' \itemize{
#' \item \code{Species}: The class of mushroom.
#' \item \code{Pileus Cap Width}: The pileus cap width of the mushroom.
#' \item \code{Stipe Length}: The stipe length of the mushroom.
#' \item \code{Stipe Thickness}: The stipe thickness of the mushroom.
#' \item \code{Edibility}: The edibility of mushroom (U: unknown, Y: Yes, N: No, T: Toxic).
#' }
#'
#' @usage data(mushroom)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(mushroom)
#' @keywords datasets
#' @source
#' Billard, L. and Diday, E. (2006) Symbolic Data Analysis: Conceptual Statistics and Data Mining John Wiley & Sons, Ltd.
"mushroom"
#' @name mushroom.int
#' @title Mushroom Interval Dataset
#' @description
#' Mushroom interval dataset generated from mushroom dataset.
#' The mushroom data set consists of a set of 23 species described by 3 interval variables.
#' These mushroom species are members of the genus Agaricies.
#' The specific variables and their values are extracted from the Fungi of California Species.
#'
#' @format A data frame with 23 observations and 5 variables named Species, Pileus Cap
#' Width, Stipe Length, Stipe Thickness, and Edibility.
#'
#' \itemize{
#' \item \code{Species}: The class of mushroom.
#' \item \code{Pileus Cap Width}: The pileus cap width of the mushroom.
#' \item \code{Stipe Length}: The stipe length of the mushroom.
#' \item \code{Stipe Thickness}: The stipe thickness of the mushroom.
#' \item \code{Edibility}: The edibility of mushroom (U: unknown, Y: Yes, N: No, T: Toxic).
#' }
#'
#' @usage data(mushroom.int)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(mushroom.int)
#' @keywords datasets
#' @source
#' Billard, L. and Diday, E. (2006) Symbolic Data Analysis: Conceptual Statistics and Data Mining John Wiley & Sons, Ltd.
"mushroom.int"
#' @name age_cholesterol_weight.int
#' @title Age-cholesterol-weight Interval-Valued Dataset
#' @description Age-cholesterol-weight Interval-Valued Dataset.
#' @usage data(age_cholesterol_weight.int)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(age_cholesterol_weight.int)
#' @keywords datasets
"age_cholesterol_weight.int"
#' @name airline_flights
#' @title Airline Flights Dataset
#' @description Airline Flights Dataset.
#' @usage data(airline_flights)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(airline_flights)
#' @keywords datasets
"airline_flights"
#' @name airline_flights2
#' @title Airline Flights Modal-Valued Dataset
#' @description Airline Flights Modal-Valued Dataset.
#' @usage data(airline_flights2)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(airline_flights2)
#' @keywords datasets
"airline_flights2"
#' @name baseball.int
#' @title Baseball Interval-Valued Dataset
#' @description Baseball Interval-Valued Dataset.
#' @usage data(baseball.int)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(baseball.int)
#' @keywords datasets
"baseball.int"
#' @name bird.int
#' @title Bird Interval-Valued Dataset
#' @description Bird Interval-Valued Dataset.
#' @usage data(bird.int)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(bird.int)
#' @keywords datasets
"bird.int"
#' @name blood_pressure.int
#' @title Blood Pressure Interval-Valued Dataset
#' @description blood pressure Interval-Valued Dataset.
#' @usage data(blood_pressure.int)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(blood_pressure.int)
#' @keywords datasets
"blood_pressure.int"
#' @name car.int
#' @title Car Interval-Valued Dataset
#' @description Car Interval-Valued Dataset.
#' @usage data(car.int)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(car.int)
#' @keywords datasets
"car.int"
#' @name crime
#' @title Crime demographics Dataset
#' @description Crime demographics Dataset.
#' @usage data(crime)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(crime)
#' @keywords datasets
"crime"
#' @name crime2
#' @title Crime demographics Modal-Valued Dataset
#' @description Crime demographics Modal-Valued Dataset.
#' @usage data(crime2)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(crime2)
#' @keywords datasets
"crime2"
#' @name finance.int
#' @title Finance Interval-Valued Dataset
#' @description Finance Interval-Valued Dataset.
#' @usage data(finance.int)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(finance.int)
#' @keywords datasets
"finance.int"
#' @name fuel_consumption
#' @title Fuel Consumption Dataset
#' @description Fuel Consumption Dataset.
#' @usage data(fuel_consumption)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(fuel_consumption)
#' @keywords datasets
"fuel_consumption"
#' @name health_insurance
#' @title Health Insurance Dataset
#' @description Health Insurance Dataset.
#' @usage data(health_insurance)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(health_insurance)
#' @keywords datasets
"health_insurance"
#' @name health_insurance2
#' @title Health Insurance Modal-Valued Dataset
#' @description Health Insurance Modal-Valued Dataset.
#' @usage data(health_insurance2)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(health_insurance2)
#' @keywords datasets
"health_insurance2"
#' @name hierarchy
#' @title Hierarchy Dataset
#' @description Hierarchy Dataset.
#' @usage data(hierarchy)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(hierarchy)
#' @keywords datasets
"hierarchy"
#' @name hierarchy.int
#' @title Hierarchy Interval-Valued Dataset
#' @description Hierarchy Interval-Valued Dataset.
#' @usage data(hierarchy.int)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(hierarchy.int)
#' @keywords datasets
"hierarchy.int"
#' @name horses.int
#' @title Horses Interval-Valued Dataset
#' @description Horses Interval-Valued Dataset.
#' @usage data(horses.int)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(horses.int)
#' @keywords datasets
"horses.int"
#' @name occupations
#' @title Occupation Salaries Dataset
#' @description Occupation Salaries Dataset.
#' @usage data(occupations)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(occupations)
#' @keywords datasets
"occupations"
#' @name occupations2
#' @title Occupation Salaries Modal-Valued Dataset
#' @description Occupation Salaries Modal-Valued Dataset.
#' @usage data(occupations)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(occupations2)
#' @keywords datasets
"occupations2"
#' @name profession.int
#' @title Profession Work Salary Time Interval-Valued Dataset
#' @description Profession Work Salary Time Interval-Valued Dataset.
#' @usage data(profession.int)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(profession.int)
#' @keywords datasets
"profession.int"
#' @name veterinary.int
#' @title Veterinary Interval-Valued Dataset
#' @description Veterinary Interval-Valued Dataset.
#' @usage data(veterinary.int)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(veterinary.int)
#' @keywords datasets
"veterinary.int"
#' @name Abalone.iGAP
#' @title Abalone iGAP format Dataset
#' @description A interval-valued data set containing 24 units,
#' created from from the Abalone dataset (UCI Machine Learning Repository), after aggregating by sex and age.
#' @usage data(Abalone.iGAP)
#' @references Billard L. and Diday E. (2006).Symbolic data analysis:
#' Conceptual statistics and data mining. Wiley, Chichester.
#' @examples
#' data(Abalone.iGAP)
#' @keywords datasets
"Abalone.iGAP"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.