Nothing
#' The kurtosis is about the tailedness, or the degree of heaviness of the
#' tails, in the frequency
#' distribution. The function computes an estimator of the kurtosis.
#'
#' @details The kurtosis of a random variable is the fourth moment of the
#' standardized variable.
#' There are several ways of parameterizing a kurtosis estimator, such as
#' depending on the
#' fourth moment and the standard deviation of the random variable.
#'
#' @title Computes the sample kurtosis of a distribution
#' @param x a numeric vector of a random variable.
#' @param na.rm logical operator to remove NA values. The default is set
#' to TRUE.
#'
#' @return An estimator of the kurtosis.
#'
#' @author Christian Salas-Eljatib
#' @examples
#' y.var<-rnorm(100);x.var<-rbeta(100,.2,2)
#' kurto(y.var)
#' kurto(x.var)
#'
#' @rdname kurto
#' @export
#'
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
kurto <- function(x, na.rm=TRUE){
m4 <- mean((x-mean(x, na.rm=na.rm))^4, na.rm=na.rm)
out <- m4/(stats::sd(x, na.rm=na.rm)^4)-3
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.