Nothing
#' Autocovariance function estimation via difference-based methods
#'
#' Difference-based (auto)covariance/correlation estimation in change point
#' regression with stationary errors.
#'
#' Provides bias-reducing methods for (auto)covariance-correlation
#' estimation in change point regression with stationary \eqn{m}-dependent errors
#' without having to pre-estimate the underlying signal of the observations.
#' In the same spirit, provides a robust estimator of the autorregressive coefficient
#' in change point regression with stationary, \eqn{AR(1)} errors.
#' It also includes a general projection-based method for covariance matrix estimation.
#'
#' @name dbacf-package
#' @author Tecuapetla-Gómez, I. \email{itecuap@@conabio.gob.mx}
#'
#' @section Autocovariance Estimation:
#' \code{\link{dbacf}} returns \emph{and plots by default} (auto)covariance/correlation
#' estimates without pre-estimating the underlying \emph{not necessarily smooth}
#' signal of observations with \emph{stationary} \eqn{m}-dependent errors. The corresponding
#' plot method \code{\link[dbacf]{plot.dbacf}} allows for adjusting graphical
#' parameters to users' liking. This method is based on \code{\link[stats]{plot.acf}}.
#'
#' \code{\link{dbacf_AR1}} returns (auto)covariance/correlation estimates while
#' circumventing the difficult estimation of the underlying change point regression
#' function from observations with stationary \eqn{AR(1)} errors.
#'
#' @section Covariance Matrix Estimation:
#' Given a matrix estimate, \emph{not necessarily positive definite}, of
#' the covariance matrix of a stationary process,
#' \code{\link{nearPDToeplitz}} returns the nearest, \emph{in the Frobenius norm},
#' covariance matrix to the initial estimate. See \code{\link{projectToeplitz}}
#' for the projection of a given symmetric matrix onto the space of Toeplitz matrices.
#' See also \code{\link{symBandedToeplitz}} for creating a (stationary process'
#' large covariance) matrix by specifying its dimension and values of its
#' autocovariance function.
#'
#' @references Grigoriadis, K.M., Frazho, A., Skelton, R. (1994).
#' \emph{Application of alternating convex projection methods for computation
#' of positive Toeplitz matrices}, IEEE Transactions on signal processing
#' \bold{42(7)}, 1873--1875.
#'
#' @references N. Higham (2002). \emph{Computing the nearest correlation matrix - a
#' problem from finance}, Journal of Numerical Analysis \bold{22}, 329--343.
#'
#' @references Tecuapetla-Gómez, I and Munk, A. (2017). \emph{Autocovariance
#' estimation in regression with a discontinuous signal and \eqn{m}-dependent errors: A
#' difference-based approach}. Scandinavian Journal of Statistics, \bold{44(2)}, 346--368.
#'
#' @references Levine, M. and Tecuapetla-Gómez, I. (2023). \emph{Autocovariance
#' function estimation via difference schemes for a semiparametric change point model
#' with \eqn{m}-dependent errors}. Submitted.
#'
#' @keywords package
#' @docType package
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.