Description Usage Arguments Value
View source: R/dcm_mcmc_scorer.R
If applicable, randomly samples new set of parameter estimates, obtains applicable estimates and uses those to calculate threshold values for both items and latent variables, draws new set of alpha values.
| 1 2 3 | iterate(nattributes, class0, estimates0, threshold.labels, lambda.equations,
  is.pi.r, parameter.means, parameter.acov, observations, nobservations,
  is.parameter.randomized, qmatrix, pmatrix)
 | 
| nattributes | numberic value for number of attributes | 
| class0 | The previous value of attribute profile for each respondent | 
| estimates0 | a numeric vector of parameter estimates | 
| threshold.labels | an nclasses by nitems character matrix with appropriate threshold labels | 
| lambda.equations | equations for lambda parameters | 
| is.pi.r | If  | 
| parameter.means | a numerical vector of calibrated item and structural parameters | 
| parameter.acov | a numerical matrix of covariances of item and structural parameters | 
| observations | a data frame or matrix of dichotomous responses | 
| nobservations | a numeric value of number of observations | 
| is.parameter.randomized | if true parameter estimates are randomized using acov matrix | 
| qmatrix | a data frame or matrix of 1s and 0s indicating relation between items and attributes.
This matrix specifies which items are required for mastery of each attribute (i.e., latent variable).
A matrix must be a size of  | 
| pmatrix | a numeric nclasses by nattributes matrix of all possible attribute profiles | 
a list of newly sampled classes and parameter estimates
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.