| predict.dcsvm | R Documentation |
Predicts binary class labels or fitted values for a dcsvm model using new data.
## S3 method for class 'dcsvm'
predict(object, newx, s = NULL, type = c("class", "link"), ...)
object |
A fitted |
newx |
A matrix of new values for |
s |
Value(s) of the L1 tuning parameter |
type |
|
... |
Not used. Other arguments to |
Make Predictions for Sparse Density-Convoluted SVM
This function predicts the binary class labels or the fitted values of a dcsvm object.
s represents the new lambda values for making predictions. If s is not part of the original lambda sequence generated by dcsvm, predict.dcsvm uses linear interpolation to compute predictions by combining adjacent lambda values in the original sequence. This functionality is adapted from the predict methods in the glmnet and gcdnet packages.
Returns either the predicted class labels or the fitted values, depending on the choice of type.
coef.dcsvm
data(colon)
fit <- dcsvm(colon$x, colon$y, lam2=1)
print(predict(fit, type="class", newx=colon$x[2:5, ]))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.