dcurves: Decision Curve Analysis for Model Evaluation

Diagnostic and prognostic models are typically evaluated with measures of accuracy that do not address clinical consequences. Decision-analytic techniques allow assessment of clinical outcomes, but often require collection of additional information may be cumbersome to apply to models that yield a continuous result. Decision curve analysis is a method for evaluating and comparing prediction models that incorporates clinical consequences, requires only the data set on which the models are tested, and can be applied to models that have either continuous or dichotomous results. See the following references for details on the methods: Vickers (2006) <doi:10.1177/0272989X06295361>, Vickers (2008) <doi:10.1186/1472-6947-8-53>, and Pfeiffer (2020) <doi:10.1002/bimj.201800240>.

Package details

AuthorDaniel D. Sjoberg [aut, cre, cph], Emily Vertosick [ctb]
MaintainerDaniel D. Sjoberg <danield.sjoberg@gmail.com>
LicenseMIT + file LICENSE
URL https://github.com/ddsjoberg/dcurves https://www.danieldsjoberg.com/dcurves/
Package repositoryView on CRAN
Installation Install the latest version of this package by entering the following in R:

Try the dcurves package in your browser

Any scripts or data that you put into this service are public.

dcurves documentation built on Dec. 28, 2022, 1:07 a.m.