| ddml_plm | R Documentation |
Estimator for the partially linear model.
ddml_plm(
y,
D,
X,
learners,
learners_DX = learners,
sample_folds = 10,
ensemble_type = "nnls",
shortstack = FALSE,
cv_folds = 10,
custom_ensemble_weights = NULL,
custom_ensemble_weights_DX = custom_ensemble_weights,
cluster_variable = seq_along(y),
subsamples = NULL,
cv_subsamples_list = NULL,
silent = FALSE
)
y |
The outcome variable. |
D |
A matrix of endogenous variables. |
X |
A (sparse) matrix of control variables. |
learners |
May take one of two forms, depending on whether a single
learner or stacking with multiple learners is used for estimation of the
conditional expectation functions.
If a single learner is used,
If stacking with multiple learners is used,
Omission of the |
learners_DX |
Optional argument to allow for different estimators of
|
sample_folds |
Number of cross-fitting folds. |
ensemble_type |
Ensemble method to combine base learners into final estimate of the conditional expectation functions. Possible values are:
Multiple ensemble types may be passed as a vector of strings. |
shortstack |
Boolean to use short-stacking. |
cv_folds |
Number of folds used for cross-validation in ensemble construction. |
custom_ensemble_weights |
A numerical matrix with user-specified
ensemble weights. Each column corresponds to a custom ensemble
specification, each row corresponds to a base learner in |
custom_ensemble_weights_DX |
Optional argument to allow for different
custom ensemble weights for |
cluster_variable |
A vector of cluster indices. |
subsamples |
List of vectors with sample indices for cross-fitting. |
cv_subsamples_list |
List of lists, each corresponding to a subsample containing vectors with subsample indices for cross-validation. |
silent |
Boolean to silence estimation updates. |
ddml_plm provides a double/debiased machine learning
estimator for the parameter of interest \theta_0 in the partially
linear model given by
Y = \theta_0D + g_0(X) + U,
where (Y, D, X, U) is a random vector such that
E[Cov(U, D\vert X)] = 0 and E[Var(D\vert X)] \neq 0, and
g_0 is an unknown nuisance function.
ddml_plm returns an object of S3 class
ddml_plm. An object of class ddml_plm is a list containing
the following components:
coefA vector with the \theta_0 estimates.
weightsA list of matrices, providing the weight assigned to each base learner (in chronological order) by the ensemble procedure.
mspeA list of matrices, providing the MSPE of each base learner (in chronological order) computed by the cross-validation step in the ensemble construction.
ols_fitObject of class lm from the second
stage regression of Y - \hat{E}[Y|X] on
D - \hat{E}[D|X].
learners,learners_DX,cluster_variable,
subsamples, cv_subsamples_list,
ensemble_typePass-through of selected user-provided arguments. See above.
Ahrens A, Hansen C B, Schaffer M E, Wiemann T (2023). "ddml: Double/debiased machine learning in Stata." https://arxiv.org/abs/2301.09397
Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C B, Newey W, Robins J (2018). "Double/debiased machine learning for treatment and structural parameters." The Econometrics Journal, 21(1), C1-C68.
Wolpert D H (1992). "Stacked generalization." Neural Networks, 5(2), 241-259.
summary.ddml_plm()
Other ddml:
ddml_ate(),
ddml_fpliv(),
ddml_late(),
ddml_pliv()
# Construct variables from the included Angrist & Evans (1998) data
y = AE98[, "worked"]
D = AE98[, "morekids"]
X = AE98[, c("age","agefst","black","hisp","othrace","educ")]
# Estimate the partially linear model using a single base learner, ridge.
plm_fit <- ddml_plm(y, D, X,
learners = list(what = mdl_glmnet,
args = list(alpha = 0)),
sample_folds = 2,
silent = TRUE)
summary(plm_fit)
# Estimate the partially linear model using short-stacking with base learners
# ols, lasso, and ridge. We can also use custom_ensemble_weights
# to estimate the ATE using every individual base learner.
weights_everylearner <- diag(1, 3)
colnames(weights_everylearner) <- c("mdl:ols", "mdl:lasso", "mdl:ridge")
plm_fit <- ddml_plm(y, D, X,
learners = list(list(fun = ols),
list(fun = mdl_glmnet),
list(fun = mdl_glmnet,
args = list(alpha = 0))),
ensemble_type = 'nnls',
custom_ensemble_weights = weights_everylearner,
shortstack = TRUE,
sample_folds = 2,
silent = TRUE)
summary(plm_fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.