knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(denim)
In denim, users have 2 options to define dwell-time distribution:
As a parametric distribution: using d_*()
functions.
As a non-parametric distribution: using nonparametric()
function and user must provide the histogram of distribution where bin-width matches timeStep
.
To demonstrate the difference between 2 approaches, we can try modeling an SIR model with Weibull distributed infectious period using nonparametric()
and d_weibull()
.
Model definition using d_weibull()
sir_parametric <- denim_dsl({ S -> I = beta * (I/N) * S * timeStep I -> R = d_weibull(scale = r_scale, shape = r_shape) })
Model parameters that must be defined are: beta
, N
, r_scale
, r_shape
Model definition using nonparametric()
sir_nonparametric <- denim_dsl({ S -> I = beta * (I/N) * S * timeStep I -> R = nonparametric(dwelltime_dist) })
Model parameters that must be defined are: beta
, N
, dwelltime_dist
(the discrete dwell time distribution)
Run model
We will run both models under the following model settings
# parameters mod_params <- list( beta = 0.4, N = 1000, r_scale = 4, r_shape = 3 ) # initial population init_vals <- c(S = 950, I = 50, R = 0) # simulation duration and timestep sim_duration <- 30 timestep <- 0.05
Running the model with d_weibull()
is straight forward
parametric_mod <- sim(sir_parametric, initialValues = init_vals, parameters = mod_params, simulationDuration = sim_duration, timeStep = timestep) plot(parametric_mod, ylim = c(0, 1000))
However, to run the model using nonparametric()
, we first need to compute the discrete dwell time distribution (dwelltime_dist
).
Since all parametric distributions are asymptotic to 1, we will set the maximal dwell time as the time point where the cumulative probability is sufficiently close to 1 (i.e. above the threshold 1 - error_tolerance
).
A helper function to compute discrete dwell time distribution from a distribution function in R is provided below.
# Compute discrete distribution of dwell-tinme # dist_func - R distribution function for dwell time (pexp, pgamma, etc.) # ... - parameters for dist_func compute_dist <- function(dist_func,..., timestep=0.05, error_tolerance=0.0001){ maxtime <- timestep prev_prob <- 0 prob_dist <- numeric() while(TRUE){ # get current cumulative prob and check whether it is sufficiently close to 1 temp_prob <- ifelse( dist_func(maxtime, ...) < (1 - error_tolerance), dist_func(maxtime, ...), 1); # get f(t) curr_prob <- temp_prob - prev_prob prob_dist <- c(prob_dist, curr_prob) prev_prob <- temp_prob maxtime <- maxtime + timestep if(temp_prob == 1){ break } } prob_dist }
We can then run the model as followed
# Compute the discrete distribution dwelltime_dist <- compute_dist(pweibull, scale = mod_params$r_scale, shape = mod_params$r_shape, timestep = timestep) # Compute the discrete distribution nonparametric_mod <- sim(sir_nonparametric, initialValues = init_vals, parameters = list( beta = mod_params$beta, N = mod_params$N, dwelltime_dist = dwelltime_dist ), simulationDuration = sim_duration, timeStep = timestep) plot(nonparametric_mod, ylim = c(0, 1000))
By using nonparametric()
, we can run the model with any dwell time distribution shape
Consider the following multimodal distribution.
first_dist <- compute_dist(pweibull, scale = 1.5, shape = 4, timestep = timestep) second_dist <- compute_dist(pweibull, scale = 3, shape = 3.5, timestep = timestep) first_dist <- c(rep(0, length(second_dist) - length(first_dist)), first_dist) multimodal_dist <- first_dist + second_dist
timestep <- 0.05 plot(seq(0, by = 0.05, length.out = length(multimodal_dist)), multimodal_dist, type = "l", col = "#374F77", lty = 1, lwd = 3, xlab = "Length of stay (days)", ylab = "", yaxt = 'n')
We can also run the sir_nonparametric
model from last example with this dwell time distribution
# model parameter parameters <- list(beta = 0.4, N = 1000, dwelltime_dist = multimodal_dist) # initial population init_vals <- c(S = 950, I = 50, R = 0) # simulation duration and timestep sim_duration <- 30 timestep <- 0.05 # Run the model with multimodel distribution nonparametric_mod <- sim( sir_nonparametric, initialValues = init_vals, parameters = parameters, simulationDuration = sim_duration, timeStep = timestep) plot(nonparametric_mod, ylim = c(0, 1000))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.