wald_test_bnb: Wald test for BNB ratio of means

View source: R/wald_test_bnb.r

wald_test_bnbR Documentation

Wald test for BNB ratio of means

Description

Wald test for the ratio of means from bivariate negative binomial outcomes.

Usage

wald_test_bnb(data, ci_level = NULL, link = "log", ratio_null = 1, ...)

Arguments

data

(list)
A list whose first element is the vector of negative binomial values from sample 1 and the second element is the vector of negative binomial values from sample 2. Each vector must be sorted by the subject/item index and must be the same sample size. NAs are silently excluded. The default output from sim_bnb().

ci_level

(Scalar numeric: NULL; ⁠(0, 1)⁠)
If NULL, confidence intervals are set as NA. If in ⁠(0, 1)⁠, confidence intervals are calculated at the specified level.

link

(Scalar string: "log")
The one-to-one link function for transformation of the ratio in the test hypotheses. Must be one of "log" (default), "sqrt", "squared", or "⁠identity"⁠. See 'Details' for additional information.

ratio_null

(Scalar numeric: 1; ⁠(0, Inf)⁠)
The (pre-transformation) ratio of means assumed under the null hypothesis (sample 2 / sample 1). Typically ratio_null = 1 (no difference). See 'Details' for additional information.

...

Optional arguments passed to the MLE function mle_bnb().

Details

This function is primarily designed for speed in simulation. Missing values are silently excluded.

Suppose X_1 \mid G = g \sim \text{Poisson}(\mu g) and X_2 \mid G = g \sim \text{Poisson}(r \mu g) where G \sim \text{Gamma}(\theta, \theta^{-1}) is the random item (subject) effect. Then X_1, X_2 \sim \text{BNB}(\mu, r, \theta) is the joint distribution where X_1 and X_2 are dependent (though conditionally independent), X_1 is the count outcome for sample 1 of the items (subjects), X_2 is the count outcome for sample 2 of the items (subjects), \mu is the conditional mean of sample 1, r is the ratio of the conditional means of sample 2 with respect to sample 1, and \theta is the gamma distribution shape parameter which controls the dispersion and the correlation between sample 1 and 2.

The hypotheses for the Wald test of r are

\begin{aligned} H_{null} &: f(r) = f(r_{null}) \\ H_{alt} &: f(r) \neq f(r_{null}) \end{aligned}

where f(\cdot) is a one-to-one link function with nonzero derivative, r = \frac{\bar{X}_2}{\bar{X}_1} is the population ratio of arithmetic means for sample 2 with respect to sample 1, and r_{null} is a constant for the assumed null population ratio of means (typically r_{null} = 1).

\insertCite

rettiganti_2012;textualdepower found that f(r) = r^2, f(r) = r, and f(r) = r^{0.5} had greatest power when r < 1. However, when r > 1, f(r) = \ln r, the likelihood ratio test, and f(r) = r^{0.5} had greatest power. f(r) = r^2 was biased when r > 1. Both f(r) = \ln r and f(r) = r^{0.5} produced acceptable results for any r value. These results depend on the use of asymptotic vs. exact critical values.

The Wald test statistic is

W(f(\hat{r})) = \left( \frac{f \left( \frac{\bar{x}_2}{\bar{x}_1} \right) - f(r_{null})}{f^{\prime}(\hat{r}) \hat{\sigma}_{\hat{r}}} \right)^2

where

\hat{\sigma}^{2}_{\hat{r}} = \frac{\hat{r} (1 + \hat{r}) (\hat{\mu} + \hat{r}\hat{\mu} + \hat{\theta})}{n \left[ \hat{\mu} (1 + \hat{r}) (\hat{\mu} + \hat{\theta}) - \hat{\theta}\hat{r} \right]}

Under H_{null}, the Wald test statistic is asymptotically distributed as \chi^2_1. The approximate level \alpha test rejects H_{null} if W(f(\hat{r})) \geq \chi^2_1(1 - \alpha). Note that the asymptotic critical value is known to underestimate the exact critical value. Hence, the nominal significance level may not be achieved for small sample sizes (possibly n \leq 10 or n \leq 50). The level of significance inflation also depends on f(\cdot) and is most severe for f(r) = r^2, where only the exact critical value is recommended.

Value

A list with the following elements:

Slot Subslot Name Description
1 chisq \chi^2 test statistic for the ratio of means.
2 df Degrees of freedom.
3 p p-value.
4 ratio Estimated ratio of means (group 2 / group 1).
4 1 estimate Point estimate.
4 2 lower Confidence interval lower bound.
4 3 upper Confidence interval upper bound.
5 mean1 Estimated mean of sample 1.
6 mean2 Estimated mean of sample 2.
7 dispersion Estimated dispersion.
8 n1 The sample size of sample 1.
9 n2 The sample size of sample 2.
10 method Method used for the results.
11 ci_level The confidence level.
12 link Link function used to transform the ratio of means in the test hypotheses.
13 ratio_null Assumed ratio of means under the null hypothesis.
14 mle_code Integer indicating why the optimization process terminated.
15 mle_message Information from the optimizer.

References

\insertRef

rettiganti_2012depower

\insertRef

aban_2009depower

Examples

#----------------------------------------------------------------------------
# wald_test_bnb() examples
#----------------------------------------------------------------------------
library(depower)

set.seed(1234)
sim_bnb(
  n = 40,
  mean1 = 10,
  ratio = 1.2,
  dispersion = 2
) |>
  wald_test_bnb()


depower documentation built on April 3, 2025, 9:23 p.m.