OSAT and scoring functions

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.width = 6,
  fig.height = 6
)

In this vignette, we demonstrate how to use the OSAT score (Yan et al. (2012)).

library(designit)
library(tidyverse)
if (!requireNamespace("OSAT")) {
  print("This vignette can only be rendered if `OSAT` package is installed.")
  knitr::knit_exit()
}

Loading samples. We add two dummy columns to demonstrate how to choose batch columns of interest.

osat_data_path <- system.file("extdata", package = "OSAT")
samples <- read_tsv(file.path(osat_data_path, "samples.txt"),
  col_types = cols(SampleType = col_factor(), Race = col_factor(), AgeGrp = col_factor())
) |>
  mutate(dummy_var1 = rnorm(n()), dummy_var2 = str_c(SampleType, Race, sep = " "))

Running OSAT optimization

Here we use OSAT to optimize setup.

gs <- OSAT::setup.sample(samples, optimal = c("SampleType", "Race", "AgeGrp"))

gc <- OSAT::setup.container(OSAT::IlluminaBeadChip96Plate, 7, batch = "plates")

set.seed(1234)

bench::system_time(
  g_setup <- OSAT::create.optimized.setup(sample = gs, container = gc, nSim = params$iterations)
)

OSAT::QC(g_setup)

Saving starting point of optimization

set.seed(1234)

g_setup_start <- OSAT::create.optimized.setup(sample = gs, container = gc, nSim = 1) |>
  OSAT::get.experiment.setup()

Visualize various batch factors. OSAT score is optimized only for plates in this case.

OSAT::get.experiment.setup(g_setup) |>
  select(AgeGrp, plates, chipRows, chipColumns, chips, rows, columns, wells) |>
  pivot_longer(-AgeGrp) |>
  count(AgeGrp, value, name) |>
  ggplot(aes(AgeGrp, n, fill = factor(value))) +
  geom_col(position = "dodge") +
  facet_wrap(~name, scales = "free_y")

Visualize for plates

plot_batch <- function(df) {
  df |>
    select(plates, SampleType, Race, AgeGrp) |>
    pivot_longer(c(SampleType, Race, AgeGrp), names_to = "variable", values_to = "level") |>
    count(plates, variable, level) |>
    ggplot(aes(level, n, fill = factor(plates))) +
    geom_col(position = "dodge") +
    facet_wrap(~variable, scales = "free", ncol = 1)
}

Before the optimization.

g_setup_start |> plot_batch()

After the optimization.

OSAT::get.experiment.setup(g_setup) |>
  plot_batch()

Compare scores with various implementations

Compare OSAT score generated using designit.

OSAT::getLayout(gc) |>
  left_join(OSAT::get.experiment.setup(g_setup)) |>
  data.table::data.table() |>
  osat_score("plates", c("SampleType", "Race", "AgeGrp")) |>
  with(score)

# score using OSAT
g_setup@metadata$optValue |> tail(1)

Run using BatchContainer

First let's create a BatchContainer with same dimensions.

bc <- BatchContainer$new(
  dimensions = c(plates = 7, chips = 8, rows = 6, columns = 2)
)
bc

bc$n_locations

Assign samples and get initial setup.

bc <- assign_in_order(bc, samples)

starting_assignment <- bc$get_locations() |>
  left_join(g_setup_start) |>
  pull(ID) |>
  as.integer()

bc$move_samples(location_assignment = starting_assignment)

bc$get_samples(remove_empty_locations = TRUE) |>
  plot_batch()

Using designit OSAT score implementation

scoring_f <- osat_score_generator("plates", c("SampleType", "Race", "AgeGrp"))

bc$score(scoring_f)
g_setup@metadata$optValue |> head(1)
# should be identical

bench::system_time({
  set.seed(123)
  bc_reference <- optimize_design(bc, scoring = scoring_f, max_iter = params$iterations)
})
# final score
bc_reference$score(scoring_f)
bc_reference$plot_trace() +
  ggtitle(str_glue("Final score={bc$score(scoring_f)}"))
bc$get_samples(remove_empty_locations = TRUE) |>
  plot_batch()

Manually work with data.table

Instead of relying on BatchContainer, here we have a manual optimization process using data.table.

fast_osat_optimize <- function(bc, batch_vars, feature_vars, iterations) {
  bc <- bc$copy()
  ldf <- data.table::data.table(bc$get_locations())[, c("plates")][, ".sample_id" := bc$assignment]
  fcols <- c(".sample_id", feature_vars)
  smp <- data.table::data.table(bc$samples)[, ..fcols]
  df <- smp[ldf, on = ".sample_id"]

  v <- osat_score(df, batch_vars, feature_vars)
  edf <- v$expected_dt
  current_score <- v$score
  scores <- numeric(length = iterations)
  n_avail <- nrow(df)

  for (i in 1:iterations) {
    repeat {
      pos <- sample(n_avail, 2)

      # does not make sense to shuffle NAs
      if (any(!is.na(df[pos, feature_vars[1]]))) {
        break
      }
    }

    val <- df[c(pos[2], pos[1]), fcols, with = FALSE]
    df[c(pos[1], pos[2]), (fcols) := val]

    new_score <- osat_score(df, batch_vars, feature_vars, edf)$score
    if (new_score <= current_score) {
      current_score <- new_score
    } else {
      df[c(pos[2], pos[1]), (fcols) := val]
    }

    scores[i] <- current_score
  }

  bc$assignment <- df$.sample_id

  list(bc=bc, scores=scores)
}

bench::system_time({
  set.seed(123)
  opt_res <- fast_osat_optimize(bc, "plates", c("SampleType", "Race", "AgeGrp"), iterations = params$iterations)
})

Shuffle optimization with burn-in

scoring_f <- osat_score_generator("plates", c("SampleType", "Race", "AgeGrp"))

burn_in_it <- floor(params$iterations * 0.1)
burn_in_it

bench::system_time({
  set.seed(123)
  bc_burn_in <- optimize_design(
    bc,
    scoring = scoring_f,
    n_shuffle = c(
      rep(20, burn_in_it),
      rep(
        2,
        params$iterations - burn_in_it
      )
    ),
    max_iter = params$iterations
  )
})
tibble(
  i = bc_burn_in$trace$scores[[1]]$step,
  normal = bc_reference$trace$scores[[1]]$score_1,
  burnin = bc_burn_in$trace$scores[[1]]$score_1
) |>
  pivot_longer(-i, names_to = "method", values_to = "score") |>
  ggplot(aes(i, score, col = method)) +
  geom_line()

Score demonstration

bc$score(scoring_f)
assign_random(bc)

bc$get_samples()
bc$get_samples(remove_empty_locations = TRUE)

scoring_f <- list(
  fc0 = function(samples) rnorm(1) + 2 * rexp(1),
  fc1 = function(samples) rnorm(1, 100),
  fc2 = function(samples) -7
)

bc$score(scoring_f)


Try the designit package in your browser

Any scripts or data that you put into this service are public.

designit documentation built on May 29, 2024, 12:04 p.m.