detectnorm | R Documentation |
This function can be used to calculate the skewness and kurtosis based on the Beta distribution with the dataset used to conduct meta-analysis.
detectnorm( m1i, sd1i, n1i, lo1i, hi1i, m2i, sd2i, n2i, lo2i, hi2i, data, showFigure = FALSE, distri = "beta", ... )
m1i |
vector to the means of first group |
sd1i |
vector to specifiy the standard deviation of first group |
n1i |
vector to specify the sample size of first group |
lo1i |
vector to specify the possible minimum of the first group |
hi1i |
vector to specify the possible maximum of the first group |
m2i |
vector to the means of second group |
sd2i |
vector to specifiy the standard deviation of second group |
n2i |
vector to specify the sample size of second group |
lo2i |
vector to specify the possible minimum of the second group |
hi2i |
vector to specify the possible maximum of the second group |
data |
the opitional original data frame containing the data for the function |
showFigure |
when showFigure = TRUE, it will display all the plots (within the result as a list, result$fig) with theoretical normal curve and the truncated normal curve. |
distri |
Beta distribution is used when using 'distri = "beta"'; Truncated normal distribution is used when using 'distri = "truncnorm"' |
... |
other arguments |
The output of the data frame adding some columns of the possible skewness and kurtosis for each groups.
barr1999meandetectnorm
\insertRefjohnson1995continuousdetectnorm
\insertRefrobert1995simulationdetectnorm
\insertRefshah1966estimationdetectnorm
\insertRefsmithson2006betterdetectnorm
\insertRefsun2020influencedetectnorm
#truncated normal data data("trun_mdat") ex <- detectnorm(m1i = m1,sd1i = sd1,n1i = n1, hi1i = 4,lo1i = 0,m2i = m2,sd2i = sd2,n2i = n2, hi2i = 4,lo2i=0,distri = "truncnorm", data = trun_mdat) head(ex) #extremely non-normal data data("beta_mdat") ex2 <- detectnorm(m1i = m1,sd1i = sd1,n1i = n1, hi1i = hi1,lo1i = lo1,m2i = m2,sd2i = sd2,n2i = n2, hi2i = hi2,lo2i=lo2,distri = "beta", data = beta_mdat) head(ex2) mean(ex2$skew1)#sample skewness calculated from the sample mean(ex2$g1_skewness) #estimated using beta
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.