The goal of df2yaml
is to simplify the process of converting dataframe
to YAML. The dataframe with multiple key columns and one value column
(this column can also contain key-value pair(s)) will be converted to
multi-level hierarchy.
df2yaml
is an R package distributed as part of the
CRAN. To install the package, start R and
enter:
# install via CRAN
install.package("df2yaml")
# install via Github
# install.package("remotes") #In case you have not installed it.
remotes::install_github("showteeth/df2yaml")
In general, it is recommended to install from Github repository (update more timely).
# library
library(df2yaml)
#> Warning: replacing previous import 'lifecycle::last_warnings' by
#> 'rlang::last_warnings' when loading 'tibble'
#> Warning: replacing previous import 'lifecycle::last_warnings' by
#> 'rlang::last_warnings' when loading 'pillar'
# load test file
test_file <- system.file("extdata", "df2yaml_l3.txt", package = "df2yaml")
test_data = read.table(file = test_file, header = T, sep = "\t")
head(test_data)
#> paras subcmd values
#> 1 picard insert_size MINIMUM_PCT: 0.5
#> 2 picard markdup CREATE_INDEX: true; VALIDATION_STRINGENCY: SILENT
#> 3 preseq -r 100 -seg_len 100000000
#> 4 qualimap --java-mem-size=20G -outformat HTML
#> 5 rseqc mapq: 30; percentile-floor: 5; percentile-step: 5
# output yaml string
yaml_res = df2yaml(df = test_data, key_col = c("paras", "subcmd"), val_col = "values")
cat(yaml_res)
#> preseq: -r 100 -seg_len 100000000
#> qualimap: --java-mem-size=20G -outformat HTML
#> rseqc:
#> mapq: 30
#> percentile-floor: 5
#> percentile-step: 5
#> picard:
#> insert_size:
#> MINIMUM_PCT: 0.5
#> markdup:
#> CREATE_INDEX: true
#> VALIDATION_STRINGENCY: SILENT
Please note that the df2yaml
project is released with a Contributor
Code of
Conduct.
By contributing to this project, you agree to abide by its terms.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.