Nothing
#' Dynamic Factor Models
#'
#' @description
#'
#' *dfms* provides efficient estimation of Dynamic Factor Models via the EM Algorithm --- following Doz, Giannone & Reichlin (2011, 2012) and Banbura & Modugno (2014). Contents:
#'
#' **Information Criteria to Determine the Number of Factors**
#'
#' \code{\link[=ICr]{ICr()}}\cr
#'
#' - \code{\link[=plot.ICr]{plot(<ICr>)}}\cr
#' - \code{\link[=screeplot.ICr]{screeplot(<ICr>)}}\cr
#'
#' **Fit a Dynamic Factor Model**
#'
#' \code{\link[=DFM]{DFM()}}\cr
#'
#' - \code{\link[=summary.dfm]{summary(<dfm>)}}\cr
#' - \code{\link[=plot.dfm]{plot(<dfm>)}}\cr
#' - \code{\link[=as.data.frame.dfm]{as.data.frame(<dfm>)}}\cr
#' - \code{\link[=residuals.dfm]{residuals(<dfm>)}}\cr
#' - \code{\link[=fitted.dfm]{fitted(<dfm>)}}
#'
#' **Generate Forecasts**
#'
#' \code{\link[=predict.dfm]{predict(<dfm>)}}\cr
#'
#' - \code{\link[=plot.dfm_forecast]{plot(<dfm_forecast>)}}\cr
#' - \code{\link[=as.data.frame.dfm_forecast]{as.data.frame(<dfm_forecast>)}}\cr
#'
#' **Fast Stationary Kalman Filtering and Smoothing**
#'
#' \code{\link[=SKF]{SKF()}} --- Stationary Kalman Filter\cr
#' \code{\link[=FIS]{FIS()}} --- Fixed Interval Smoother\cr
#' \code{\link[=SKFS]{SKFS()}} --- Stationary Kalman Filter + Smoother\cr
#'
#' **Helper Functions**
#'
#' \code{\link[=.VAR]{.VAR()}} --- (Fast) Barebones Vector-Autoregression\cr
#' \code{\link[=ainv]{ainv()}} --- Armadillo's Inverse Function\cr
#' \code{\link[=apinv]{apinv()}} --- Armadillo's Pseudo-Inverse Function\cr
#' \code{\link[=tsnarmimp]{tsnarmimp()}} --- Remove and Impute Missing Values in a Multivariate Time Series\cr
#' \code{\link[=em_converged]{em_converged()}} --- Convergence Test for EM-Algorithm\cr
#'
#' **Data**
#'
#' \code{\link{BM14_M}} --- Monthly Series by Banbura and Modugno (2014)\cr
#' \code{\link{BM14_Q}} --- Quarterly Series by Banbura and Modugno (2014)\cr
#' \code{\link{BM14_Models}} --- Series Metadata + Small/Medium/Large Model Specifications\cr
#'
#' @references
#' Doz, C., Giannone, D., & Reichlin, L. (2011). A two-step estimator for large approximate dynamic factor models based on Kalman filtering. *Journal of Econometrics, 164*(1), 188-205. <doi:10.1016/j.jeconom.2011.02.012>
#'
#' Doz, C., Giannone, D., & Reichlin, L. (2012). A quasi-maximum likelihood approach for large, approximate dynamic factor models. *Review of Economics and Statistics, 94*(4), 1014-1024. <doi:10.1162/REST_a_00225>
#'
#' Banbura, M., & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. *Journal of Applied Econometrics, 29*(1), 133-160. <doi:10.1002/jae.2306>
#'
#' @docType package
#' @name dfms-package
#' @aliases dfms
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.