| dfr-package | R Documentation |
Implementation of the Dual Feature Reduction (DFR) approach for the Sparse Group Lasso (SGL) and the Adaptive Sparse Group Lasso (aSGL) (Feser and Evangelou (2024) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.48550/arXiv.2405.17094")}). The DFR approach is a feature reduction approach that applies strong screening to reduce the feature space before optimisation, leading to speed-up improvements for fitting SGL (Simon et al. (2013) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10618600.2012.681250")}) and aSGL (Mendez-Civieta et al. (2020) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11634-020-00413-8")} and Poignard (2020) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s10463-018-0692-7")}) models. DFR is implemented using the Adaptive Three Operator Splitting (ATOS) (Pedregosa and Gidel (2018) \Sexpr[results=rd]{tools:::Rd_expr_doi("10.48550/arXiv.1804.02339")}) algorithm, with linear and logistic SGL models supported, both of which can be fit using k-fold cross-validation. Dense and sparse input matrices are supported.
Maintainer: Fabio Feser ff120@ic.ac.uk (ORCID)
Useful links:
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.