| predict.difORD | R Documentation | 
"difORD" class.S3 method for predictions from the model used in the
object of "difORD" class.
## S3 method for class 'difORD'
predict(object, item = "all", match, group, type = "category", ...)
| object | an object of  | 
| item | numeric or character: either character  | 
| match | numeric: matching criterion for new observations. | 
| group | numeric: group membership for new observations. | 
| type | character: type of probability to be computed. Either
 | 
| ... | other generic parameters for  | 
Adela Hladka (nee Drabinova) 
Institute of Computer Science of the Czech Academy of Sciences 
hladka@cs.cas.cz 
Patricia Martinkova 
Institute of Computer Science of the Czech Academy of Sciences 
martinkova@cs.cas.cz 
Hladka, A. & Martinkova, P. (2020). difNLR: Generalized logistic regression models for DIF and DDF detection. The R Journal, 12(1), 300–323, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.32614/RJ-2020-014")}.
difORD for DIF detection among ordinal data using either cumulative logit or adjacent category logit model. 
predict for generic function for prediction.
## Not run: 
# loading data
data(Anxiety, package = "ShinyItemAnalysis")
Data <- Anxiety[, paste0("R", 1:29)] # items
group <- Anxiety[, "gender"] # group membership variable
# testing both DIF effects with cumulative logit model
(x <- difORD(Data, group, focal.name = 1, model = "cumulative"))
# fitted values
predict(x, item = "R6")
# predicted values
predict(x, item = "R6", match = 0, group = c(0, 1))
predict(x, item = "R6", match = 0, group = c(0, 1), type = "cumulative")
predict(x, item = c("R6", "R7"), match = 0, group = c(0, 1))
# testing both DIF effects with adjacent category logit model
(x <- difORD(Data, group, focal.name = 1, model = "adjacent"))
# fitted values
predict(x, item = "R6")
# predicted values
predict(x, item = "R6", match = 0, group = c(0, 1))
predict(x, item = c("R6", "R7"), match = 0, group = c(0, 1))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.