An interface to 'DifferentialEquations.jl' <https://diffeq.sciml.ai/dev/> from the R programming language. It has unique high performance methods for solving ordinary differential equations (ODE), stochastic differential equations (SDE), delay differential equations (DDE), differential-algebraic equations (DAE), and more. Much of the functionality, including features like adaptive time stepping in SDEs, are unique and allow for multiple orders of magnitude speedup over more common methods. Supports GPUs, with support for CUDA (NVIDIA), AMD GPUs, Intel oneAPI GPUs, and Apple's Metal (M-series chip GPUs). 'diffeqr' attaches an R interface onto the package, allowing seamless use of this tooling by R users. For more information, see Rackauckas and Nie (2017) <doi:10.5334/jors.151>.
Package details |
|
---|---|
Author | Christopher Rackauckas [aut, cre, cph] |
Maintainer | Christopher Rackauckas <me@chrisrackauckas.com> |
License | MIT + file LICENSE |
Version | 2.1.0 |
URL | https://github.com/SciML/diffeqr |
Package repository | View on CRAN |
Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.