title: "Calculating SHA1 hashes with digest() and sha1()" author: "Thierry Onkelinx and Dirk Eddelbuettel" date: "Written Jan 2016, updated Jan 2018 and Oct 2020" css: "water.css"
NB: This vignette is (still) work-in-progress and not yet complete.
TBD
digest()
and sha1()
R FAQ 7.31 illustrates potential problems with floating point arithmetic. Mathematically the equality $x = \sqrt{x}^2$ should hold. But the precision of floating points numbers is finite. Hence some rounding is done, leading to numbers which are no longer identical.
An illustration:
```{#faq7_31 .R}
a0 <- 2 b <- sqrt(a0) a1 <- b ^ 2 identical(a0, a1) a0 - a1 a <- c(a0, a1)
sprintf("%a", a)
Although the difference is small, any difference will result in different hash when using the `digest()` function.
However, the `sha1()` function tackles this problem by using the hexadecimal representation of the numbers and truncates
that representation to a certain number of digits prior to calculating the hash function.
```{#faq7_31digest .R}
library(digest)
# different hashes with digest
sapply(a, digest, algo = "sha1")
# same hash with sha1 with default digits (14)
sapply(a, sha1)
# larger digits can lead to different hashes
sapply(a, sha1, digits = 15)
# decreasing the number of digits gives a stronger truncation
# the hash will change when then truncation gives a different result
# case where truncating gives same hexadecimal value
sapply(a, sha1, digits = 13)
sapply(a, sha1, digits = 10)
# case where truncating gives different hexadecimal value
c(sha1(pi), sha1(pi, digits = 13), sha1(pi, digits = 10))
The result of floating point arithematic on 32-bit and 64-bit can be slightly different. E.g. print(pi ^ 11, 22)
returns 294204.01797389047
on 32-bit and 294204.01797389053
on 64-bit. Note that only the last 2 digits are different.
| command | 32-bit | 64-bit|
| - | - | - |
| print(pi ^ 11, 22)
| 294204.01797389047
| 294204.01797389053
|
| sprintf("%a", pi ^ 11)
| "0x1.1f4f01267bf5fp+18"
| "0x1.1f4f01267bf6p+18"
|
| digest(pi ^ 11, algo = "sha1")
| "c5efc7f167df1bb402b27cf9b405d7cebfba339a"
| "b61f6fea5e2a7952692cefe8bba86a00af3de713"
|
| sha1(pi ^ 11, digits = 14)
| "5c7740500b8f78ec2354ea6af58ea69634d9b7b1"
| "4f3e296b9922a7ddece2183b1478d0685609a359"
|
| sha1(pi ^ 11, digits = 13)
| "372289f87396b0877ccb4790cf40bcb5e658cad7"
| "372289f87396b0877ccb4790cf40bcb5e658cad7"
|
| sha1(pi ^ 11, digits = 10)
| "c05965af43f9566bfb5622f335817f674abfc9e4"
| "c05965af43f9566bfb5622f335817f674abfc9e4"
|
digest()
or sha1()
TBD
sha1()
.sha1
.sha1()
on the (list of) relevant component(s).sha1()
zapsmall = 7
is recommended.digits = 14
is recommended in case all numerics are data.digits = 4
is recommended in case some numerics stem from floating point arithmetic.Let's illustrate this using the summary of a simple linear regression. Suppose that we want a hash that takes into account the coefficients, their standard error and sigma.
```{#sha1_lm_sum .R}
lm_SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings) lm_sum <- summary(lm_SR) class(lm_sum)
str(lm_sum)
coef_sum <- coef(lm_sum)[, c("Estimate", "Std. Error")]
sigma <- lm_sum$sigma
class(coef_sum) class(sigma)
sha1(coef_sum, digits = 4) sha1(sigma, digits = 4)
sha1(list(coef_sum, sigma), digits = 4)
sha1.summary.lm <- function(x, digits = 4, zapsmall = 7){ coef_sum <- coef(x)[, c("Estimate", "Std. Error")] sigma <- x$sigma combined <- list(coef_sum, sigma) sha1(combined, digits = digits, zapsmall = zapsmall) } sha1(lm_sum)
LCS2 <- LifeCycleSavings[rownames(LifeCycleSavings) != "Zambia", ] lm_SR2 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LCS2) sha1(summary(lm_SR2))
### lm
Let's illustrate this using the summary of a simple linear regression. Suppose that we want a hash that takes into account the coefficients, their standard error and sigma.
```{#sha1_lm .R}
class(lm_SR)
# str() gives the structure of the lm object
str(lm_SR)
# extract the model and the terms
lm_model <- lm_SR$model
lm_terms <- lm_SR$terms
# check their class
class(lm_model) # handled by sha1()
class(lm_terms) # not handled by sha1()
# define a method for formula
sha1.formula <- function(x, digits = 14, zapsmall = 7, ..., algo = "sha1"){
sha1(as.character(x), digits = digits, zapsmall = zapsmall, algo = algo)
}
sha1(lm_terms)
sha1(lm_model)
# define a method for lm
sha1.lm <- function(x, digits = 14, zapsmall = 7, ..., algo = "sha1"){
lm_model <- x$model
lm_terms <- x$terms
combined <- list(lm_model, lm_terms)
sha1(combined, digits = digits, zapsmall = zapsmall, ..., algo = algo)
}
sha1(lm_SR)
sha1(lm_SR2)
Use case
analyses that require a lot of computing time
Bundle all relevant information on an analysis in a class
calculate sha1()
file fingerprint
~ sha1()
on the stable parts
status fingerprint
~ sha1()
on the parts that result for the model
Prepare analysis objects
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.