R/leim.R

## loe got removed from CRAN



## ' Laplacian Eigenmaps
## #'
## #' An S4 Class implementing Laplacian Eigenmaps
## #'
## #' Laplacian Eigenmaps use a kernel and were originally developed to
## #' separate non-convex clusters under the name spectral clustering.
## #'
## #' @template dimRedMethodSlots
## #'
## #' @template dimRedMethodGeneralUsage
## #'
## #' @section Parameters:
## #' \code{LaplacianEigenmaps} can take the following parameters:
## #' \describe{
## #'   \item{ndim}{the number of output dimensions.}
## #'
## #'   \item{sparse}{A character vector specifying hot to make the graph
## #'    sparse, \code{"knn"} means that a K-nearest neighbor graph is
## #'    constructed, \code{"eps"} an epsilon neighborhood graph is
## #'    constructed, else a dense distance matrix is used.}
## #'
## #'   \item{knn}{The number of nearest neighbors to use for the knn graph.}
## #'   \item{eps}{The distance for the epsilon neighborhood graph.}
## #'
## #'   \item{t}{Parameter for the transformation of the distance matrix
## #'   by \eqn{w=exp(-d^2/t)}, larger values give less weight to
## #'   differences in distance, \code{t == Inf} treats all distances != 0 equally.}
## #'   \item{norm}{logical, should the normed laplacian be used?}
## #' }
## #'
## #' @section Implementation:
## #' Wraps around \code{\link[loe]{spec.emb}}.
## #'
## #' @references
## #'
## #' Belkin, M., Niyogi, P., 2003. Laplacian Eigenmaps for
## #' Dimensionality Reduction and Data Representation. Neural
## #' Computation 15, 1373.
## #'
## #' @examples
## #' if(requireNamespace(c("loe", "RSpectra", "Matrix"), quietly = TRUE)) {
## #'
## #' dat <- loadDataSet("3D S Curve")
## #' emb <- embed(dat, "LaplacianEigenmaps")
## #' plot(emb@data@data)
## #'
## #' }
## #' @include dimRedResult-class.R
## #' @include dimRedMethod-class.R
## #' @export LaplacianEigenmaps
## #' @exportClass LaplacianEigenmaps
## LaplacianEigenmaps <- setClass(
##     "LaplacianEigenmaps",
##     contains = "dimRedMethod",
##     prototype = list(
##         stdpars = list(ndim = 2, sparse = "knn", knn = 50, eps = 0.1,
##                        t = Inf, norm = TRUE),
##         fun = function (data, pars,
##                         keep.org.data = TRUE) {
##         chckpkg("loe")
##         chckpkg("RSpectra")
##         chckpkg("Matrix")

##         meta <- data@meta
##         orgdata <- if (keep.org.data) data@data else NULL
##         indata <- data@data

##         if (is.null(pars$d))     pars$d    <- dist
##         if (is.null(pars$knn))   pars$knn  <- 50
##         if (is.null(pars$ndim))  pars$ndim <- 2
##         if (is.null(pars$t))     pars$t    <- Inf
##         if (is.null(pars$norm))  pars$norm <- TRUE


##         message(Sys.time(), ": Creating weight matrix")
##         W <- if (pars$sparse == "knn") {
##                  knng <- makeKNNgraph(indata, k = pars$knn, eps = 0,
##                                       diag = TRUE)
##                  if (is.infinite(pars$t)){
##                      knng <- igraph::set_edge_attr(knng, name = "weight", value = 1)
##                  } else {
##                    ea <- igraph::edge_attr(knng, name = "weight")
##                    knng <- igraph::set_edge_attr(
##                      knng, name = "weight", value = exp( -(ea ^ 2) / pars$t ))
##                  }
##                  igraph::as_adj(knng, sparse = TRUE,
##                                 attr = "weight", type = "both")
##              } else if (pars$sparse == "eps") {
##                  tmp <- makeEpsSparseMatrix(indata, pars$eps)
##                  tmp@x <- if (is.infinite(pars$t)) rep(1, length(tmp@i))
##                           else exp(- (tmp@x ^ 2) / pars$t)
##                  ## diag(tmp) <- 1
##                  as(tmp, "dgCMatrix")
##              } else {                        # dense case
##                  tmp <- dist(indata)
##                  tmp[] <- if (is.infinite(pars$t)) 1
##                           else exp( -(tmp ^ 2) / pars$t)
##                  tmp <- as.matrix(tmp)
##                  diag(tmp) <- 1
##                  tmp
##              }

##         ## we don't need to test for symmetry, because we know the
##         ## matrix is symmetric
##         D <- Matrix::Diagonal(x = Matrix::rowSums(W))
##         L <- D - W
##         ## for the generalized eigenvalue problem, we do not have a solver
##         ## use A u = \lambda B u
##         ## Lgen <- Matrix::Diagonal(x = 1 / Matrix::diag(D) ) %*% L
##         ## but then we get negative eigenvalues and complex eigenvalues
##         Lgen <- L
##         message(Sys.time(), ": Eigenvalue decomposition")
##         outdata <- if (pars$norm) {
##                        DS <- Matrix::Diagonal(x = 1 / sqrt(Matrix::diag(D)))
##                        RSpectra::eigs_sym(DS %*% Lgen %*% DS,
##                                           k = pars$ndim + 1,
##                                           sigma = -1e-5)
##                    } else {
##                        RSpectra::eigs_sym(Lgen,
##                                           k = pars$ndim + 1,
##                                           sigma = -1e-5)
##                    }
##         message("Eigenvalues: ", paste(format(outdata$values),
##                                        collapse = " "))
##         ## The eigenvalues are in decreasing order and we remove the
##         ## smallest, which should be approx 0:
##         outdata <- outdata$vectors[, order(outdata$values)[-1],
##                                    drop = FALSE]

##         if(ncol(outdata) > 0) {
##           colnames(outdata) <- paste0("LEIM", seq_len(ncol(outdata)))
##         } else {
##           warning("no dimensions left, this is probably due to a badly conditioned eigenvalue decomposition.")
##         }

##         message(Sys.time(), ": DONE")
##         return(new(
##             "dimRedResult",
##             data         = new("dimRedData",
##                                data = outdata,
##                                meta = meta),
##             org.data     = orgdata,
##             has.org.data = keep.org.data,
##             method       = "leim",
##             pars         = pars
##         ))
##         },
##         requires = c("loe", "RSpectra", "Matrix"))
## )

Try the dimRed package in your browser

Any scripts or data that you put into this service are public.

dimRed documentation built on June 8, 2025, 10:52 a.m.