diseasystore: Benchmarks"

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

# Set a flag to determine if the vignette should be run in simple context (vignettes)
# or in an extended context (pkgdown)
simple_rendering <- rlang::is_installed("pkgdown") && !pkgdown::in_pkgdown()
library(diseasystore)

To showcase the performance of diseasystore on different database backends, we include this vignette that summarises a simple benchmark: A sample dataset is created based on the datasets::mtcars dataset. This data is repeated 1000 times and given a unique ID (the row number of the data):

# Our benchmark data is the mtcars data set but repeated to increase the data size
# If updated, please also update the version in the data-raw/benchmark.R
data_generator <- function(repeats) {
  purrr::map(
    seq(repeats),
    \(i) {
      dplyr::mutate(
        mtcars,
        "row_id" = dplyr::row_number() + (i - 1) * nrow(mtcars),
        "car" = paste(rownames(mtcars), .data$row_id)
      )
    }
  ) |>
    purrr::reduce(rbind) |>
    dplyr::rename_with(~ tolower(gsub(".", "_", .x, fixed = TRUE)))
}

benchmark_data <- tibble::as_tibble(data_generator(1000)) |>
  dplyr::select("row_id", "car", dplyr::everything())
benchmark_data

A simple diseasystore is built around this data, with two ?FeatureHandlers, one each for the cyl and vs variables.

DiseasystoreMtcars <- R6::R6Class(
  classname = "DiseasystoreBase",
  inherit = DiseasystoreBase,
  private = list(
    .ds_map = list("n_cyl" = "mtcars_cyl", "vs" = "mtcars_vs"),
    mtcars_cyl = FeatureHandler$new(
      compute = function(start_date, end_date, slice_ts, source_conn) {
        out <- benchmark_data |>
          dplyr::transmute(
            "key_car" = .data$car, "n_cyl" = .data$cyl,
            "valid_from" = Sys.Date() - lubridate::days(2 * .data$row_id - 1),
            "valid_until" = .data$valid_from + lubridate::days(2)
          )
        return(out)
      },
      key_join = key_join_sum
    ),
    mtcars_vs = FeatureHandler$new(
      compute = function(start_date, end_date, slice_ts, source_conn) {
        out <- benchmark_data |>
          dplyr::transmute(
            "key_car" = .data$car, .data$vs,
            "valid_from" = Sys.Date() - lubridate::days(2 * .data$row_id),
            "valid_until" = .data$valid_from + lubridate::days(2)
          )
        return(out)
      },
      key_join = key_join_sum
    )
  )
)

Two separate benchmark functions are created. The first benchmarking function tests the computation time of ?DiseasystoreBase$get_feature() by computing first the n_cyl feature then computing the vs feature, before finally deleting the computations from the database.

The second benchmarking function tests the computation time of ?DiseasystoreBase$key_join_features() by joining the vs feature to the n_cyl observation. Note that the n_cyl and vs are re-computed before the benchmarks are started and are not deleted by the benchmarking function as was the case for the benchmark of ?DiseasystoreBase$get_feature(). In addition, we only use the first 100 rows of the benchmark_data for this test to reduce computation time.

The performance of these benchmark functions are timed with the {{microbenchmark}} package using 10 replicates. All benchmarks are run on the same machine.

if (simple_rendering) {
  cat(
    "The results of the benchmark are shown graphically below",
    "(mean and standard deviation), where measure the",
    "performance of `diseasystore`."
  )
} else {
  cat(
    "The results of the benchmark are shown graphically below",
    "(mean and standard deviation), where we compare the",
    "current development version of `diseasystore` with the current CRAN version.",
    "In addition, we run the benchmarks with the current development version of",
    "`{SCDB}` versus the current CRAN version since `{SCDB}` is used",
    "internally in `diseasystore`."
  )
}
benchmark_location <- c(
  devtools::package_file("inst", "extdata", "benchmarks.rds"),
  system.file("extdata", "benchmarks.rds", package = "diseasystore"),
  here::here("inst", "extdata", "benchmarks.rds")
) |>
  purrr::discard(~ identical(., "")) |>
  purrr::pluck(1)


benchmarks <- readRDS(benchmark_location) |>
  dplyr::mutate("version" = as.character(.data$version))

# The benchmark contains data for the CRAN version, the main branch and whatever
# branch the workflow was run on.
# We need to render the vignette differently dependent on where the vignette is
# rendered.

# If we render the vignette on CRAN, we need to only show benchmarks for the current
# CRAN version SCDB and the newest development benchmarks
# -- but mark these benchmarks as having the new version of diseasystore.
# (since we are releasing a new version of diseasystore, these benchmarks will belong
# to the new CRAN version)

# If we render the vignette on main, we need to render the benchmarks from the
# non-main branch as the main results.
# That is because these benchmarks will be newer than those on main, and the code
# that generate the results will have been merged onto main
#-- causing the vignette to be rendered.

# If we render the vignette on the non-main branch, we need to render all of
# the benchmarks

# Determine if the SHA is on main
sha <- benchmarks |>
  dplyr::distinct(.data$version) |>
  dplyr::filter(
    !startsWith(.data$version, "diseasystore"),
    .data$version != "main"
  ) |>
  dplyr::pull("version")

# Check local git history
on_main <- tryCatch({
  system(glue::glue("git branch main --contains {sha}"), intern = TRUE) |>
    stringr::str_detect(stringr::fixed("main")) |>
    isTRUE()
}, warning = function(w) {
  # If on GitHub, git is not installed and we assume TRUE.
  # This will render the vignette as it will look once merged onto main.
  return(identical(Sys.getenv("CI"), "true"))
})

# In the simple context we use the newest benchmark (version = sha)
# This benchmark is then labelled with the newest version number of SCDB
if (simple_rendering) {

  benchmarks <- benchmarks |>
    dplyr::filter(.data$version == !!sha, .data$SCDB != "main") |>
    dplyr::mutate(
      "version" = paste0("diseasystore v", packageVersion("diseasystore"))
    )

} else if (on_main) {

  # If the SHA has been merged, use as the "main" version and remove the other,
  # older, main version
  benchmarks <- benchmarks |>
    dplyr::filter(.data$version != "main") |>
    dplyr::mutate(
      "version" = dplyr::if_else(.data$version == sha, "development", .data$version)
    )

}
benchmark_alt_text <- benchmarks |>
  dplyr::filter(startsWith(.data$version, "diseasystore v"), .data$SCDB != "main") |>
  dplyr::transmute(
    .data$benchmark_function,
    .data$database,
    "time_seconds" = .data$time / 1e9
  ) |>
  dplyr::mutate(
    "backend" = stringr::str_remove(.data$database, r"{\sv[\w+\.]+$}")
  ) |>
  dplyr::summarise(
    "mean_time_seconds" = round(mean(.data$time_seconds)),
    .by = c("benchmark_function", "backend")
  ) |>
  dplyr::summarise(
    "backends" = toString(.data$backend),
    .by = c("benchmark_function", "mean_time_seconds")
  ) |>
  dplyr::arrange(.data$benchmark_function, .data$mean_time_seconds) |>
  purrr::pmap_chr(
    \(benchmark_function, mean_time_seconds, backends) {
      glue::glue(
        "The {benchmark_function} benchmark takes {mean_time_seconds} seconds",
        " to run on the {backends} backends."
      )
    }
  ) |>
  purrr::reduce(
    paste,
    .init = "The results for the benchmarks of the CRAN versions are as follows:"
  )
# Mean and standard deviation (see ggplot2::mean_se())
mean_sd <- function(x) {
  mu <- mean(x)
  sd <- sd(x)
  data.frame(y = mu, ymin = mu - sd, ymax = mu + sd)
}

# Determine subgroups
groups <- setdiff(
  colnames(benchmarks),
  c("expr", "time", "benchmark_function", "database", "version", "n")
)

# Apply "dodging" to sub-groups to show graphically
dodge <- ggplot2::position_dodge(width = 0.6)

# Insert newline into database name to improve rendering of figures
labeller <- ggplot2::as_labeller(
  \(l) stringr::str_replace_all(l, stringr::fixed(" v"), "\nv")
)

# Set aesthetics for CRAN and non-CRAN versions
if (simple_rendering) {
  aes <- ggplot2::aes(
    x = version,
    y = time / 1e9,
    color = database
  )
} else {
  aes <- ggplot2::aes(
    x = version,
    y = time / 1e9,
    group = !!switch(length(groups) > 0, as.symbol(groups)),
    color = !!switch(length(groups) > 0, as.symbol(groups))
  )
}

g <- ggplot2::ggplot(
  benchmarks,
  aes
) +
  ggplot2::stat_summary(
    fun.data = mean_sd,
    geom = "pointrange",
    size = 0.5,
    linewidth = 1,
    position = dodge
  ) +
  ggplot2::facet_grid(
    rows = ggplot2::vars(benchmark_function),
    cols = ggplot2::vars(database),
    scales = "free_y",
    labeller = labeller
  ) +
  ggplot2::scale_x_discrete(guide = ggplot2::guide_axis(n.dodge = 2)) +
  ggplot2::labs(x = "Codebase version", y = "Time (s)") +
  ggplot2::theme(
    legend.position = "bottom",
    legend.justification = "left"
  ) +
  ggplot2::ylim(0, NA)

if (simple_rendering) {
  # Reduce font size for CRAN version
  g <- g + ggplot2::theme(text = ggplot2::element_text(size = 8))

  # Make the legend two rows
  g <- g + ggplot2::guides(color = ggplot2::guide_legend(nrow = 2, byrow = TRUE))

} else {
  # Add facets to non-CRAN rendering
  g <- g +
    ggplot2::facet_grid(
      rows = ggplot2::vars(benchmark_function),
      cols = ggplot2::vars(database),
      scales = "free_y",
      labeller = labeller
    )
}

g


Try the diseasystore package in your browser

Any scripts or data that you put into this service are public.

diseasystore documentation built on April 4, 2025, 5:56 a.m.