Description Usage Arguments Author(s) References Examples
Performs spatial downscaling of coarse grid mapping to fine grid mapping using predictive covariates and a model fitted using the caret package.
1 2 3 4 5 6 7 | ## S4 method for signature 'RasterLayer,RasterLayer'
dissever(coarse, fine, method = "rf",
p = 0.5, nmax = NULL, thresh = 0.01, min_iter = 5, max_iter = 20,
boot = NULL, level = 0.9, tune_length = 3,
tune_grid = .create_tune_grid(model = method, tune_length = tune_length),
train_control_init = .default_control_init,
train_control_iter = .default_control_iter, verbose = FALSE)
|
coarse |
object of class |
fine |
object of class |
method |
a string specifying which classification or regression model to use (via the caret package). Possible values are found using names(caret::getModelInfo()). |
p |
numeric, proportion of the fine map that is sampled for fitting the dissever model (between 0 and 1, defaults to 0.5) |
nmax |
numeric maximum number of pixels selected for fitting the dissever model. It will override the number of pixels chosen by the |
thresh |
numeric, dissever iterations will proceed until the RMSE of the dissever model reaches this value, or until the maximum number of iterations is met (defaults to 0.01) |
min_iter |
numeric, minimum number of iterations (defaults to 5) |
max_iter |
numeric, maximum number of iterations (defaults to 20) |
boot |
numeric, if not NULL (default), the number of bootstrap replicates used to derive the confidence intervals. |
level |
If this is a numeric value, it is used to derive confidence intervals using quantiles. If it is a function, it is used to derive the uncertainty using this function. |
tune_length |
numeric, the number of parameters to test to find the optimal parametrisation of the caret model (defaults to 3) |
tune_grid |
a data frame with possible tuning values |
train_control_init |
Control parameters for finding the optimal parameters of the caret model (see trainControl) |
train_control_iter |
Control parameters for fitting the caret model during the iteration phase (see trainControl) |
verbose |
controls the verbosity of the output (TRUE or FALSE) |
Brendan Malone, Pierre Roudier
Malone, B.P, McBratney, A.B., Minasny, B., Wheeler, I., (2011) A general method for downscaling earth resource information. Computers & Geosciences, 41: 119-125. http://dx.doi.org/10.1016/j.cageo.2011.08.021
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | # Load the Edgeroi dataset (see ?edgeroi)
data(edgeroi)
# Plot the Edgeroi dataset (using the raster package)
library(raster)
plot(edgeroi$carbon) # coarse resolution layer
plot(edgeroi$predictors) # fine resolution predictors
# Run dissever using a simple linear model.
# In this instance we are subsampling heavily (p = 0.05) to keep
# run time short
res_lm <- dissever(
coarse = edgeroi$carbon,
fine = edgeroi$predictors,
method = "lm",
min_iter = 5, max_iter = 10,
p = 0.05
)
# A lot more models are available through caret:
## Not run:
subset(caret::modelLookup(), forReg == TRUE, select = 'model')
## End(Not run)
# Plot dissever results
plot(res_lm, type = 'map', main = "Dissever using GAM")
plot(res_lm, type = 'perf', main = "Dissever using GAM")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.