View source: R/distantia_cluster_hclust.R
distantia_cluster_hclust | R Documentation |
This function combines the dissimilarity scores computed by distantia()
, the agglomerative clustering methods provided by stats::hclust()
, and the clustering optimization method implemented in utils_cluster_hclust_optimizer()
to help group together time series with similar features.
When clusters = NULL
, the function utils_cluster_hclust_optimizer()
is run underneath to perform a parallelized grid search to find the number of clusters maximizing the overall silhouette width of the clustering solution (see utils_cluster_silhouette()
). When method = NULL
as well, the optimization also includes all methods available in stats::hclust()
in the grid search.
This function supports a parallelization setup via future::plan()
, and progress bars provided by the package progressr.
distantia_cluster_hclust(df = NULL, clusters = NULL, method = "complete")
df |
(required, data frame) Output of |
clusters |
(required, integer) Number of groups to generate. If NULL (default), |
method |
(optional, character string) Argument of |
list:
cluster_object
: hclust object for further analyses and custom plotting.
clusters
: integer, number of clusters.
silhouette_width
: mean silhouette width of the clustering solution.
df
: data frame with time series names, their cluster label, and their individual silhouette width scores.
d
: psi distance matrix used for clustering.
optimization
: only if clusters = NULL
, data frame with optimization results from utils_cluster_hclust_optimizer()
.
Other distantia_support:
distantia_aggregate()
,
distantia_boxplot()
,
distantia_cluster_kmeans()
,
distantia_matrix()
,
distantia_model_frame()
,
distantia_spatial()
,
distantia_stats()
,
distantia_time_delay()
,
utils_block_size()
,
utils_cluster_hclust_optimizer()
,
utils_cluster_kmeans_optimizer()
,
utils_cluster_silhouette()
#weekly covid prevalence in California
tsl <- tsl_initialize(
x = covid_prevalence,
name_column = "name",
time_column = "time"
)
#subset 10 elements to accelerate example execution
tsl <- tsl_subset(
tsl = tsl,
names = 1:10
)
if(interactive()){
#plotting first three time series
tsl_plot(
tsl = tsl[1:3],
guide_columns = 3
)
}
#dissimilarity analysis
distantia_df <- distantia(
tsl = tsl,
lock_step = TRUE
)
#hierarchical clustering
#automated number of clusters
#automated method selection
distantia_clust <- distantia_cluster_hclust(
df = distantia_df,
clusters = NULL,
method = NULL
)
#names of the output object
names(distantia_clust)
#cluster object
distantia_clust$cluster_object
#distance matrix used for clustering
distantia_clust$d
#number of clusters
distantia_clust$clusters
#clustering data frame
#group label in column "cluster"
#negatives in column "silhouette_width" higlight anomalous cluster assignation
distantia_clust$df
#mean silhouette width of the clustering solution
distantia_clust$silhouette_width
#plot
if(interactive()){
dev.off()
clust <- distantia_clust$cluster_object
k <- distantia_clust$clusters
#tree plot
plot(
x = clust,
hang = -1
)
#highlight groups
stats::rect.hclust(
tree = clust,
k = k,
cluster = stats::cutree(
tree = clust,
k = k
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.