Description Usage Arguments Value See Also Examples
The Erlang distribution is a two-parameter family of continuous probability distributions with support x \in [0,∞). The two parameters are a positive integer shape parameter k and a positive real rate parameter λ. The Erlang distribution with shape parameter k = 1 simplifies to the exponential distribution, and it is a special case of the gamma distribution. It corresponds to a sum of k independent exponential variables with mean 1 / λ each.
1 | Erlang(k, lambda)
|
k |
The shape parameter. Can be any positive integer number. |
lambda |
The rate parameter. Can be any positive number. |
An Erlang
object.
Other continuous distributions:
Beta()
,
Cauchy()
,
ChiSquare()
,
Exponential()
,
FisherF()
,
Frechet()
,
GEV()
,
GP()
,
Gamma()
,
Gumbel()
,
LogNormal()
,
Logistic()
,
Normal()
,
RevWeibull()
,
StudentsT()
,
Tukey()
,
Uniform()
,
Weibull()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.