Nothing
# Combine all parameters
abundances <- paracou_6_abd[1, ]
# Similarities
Z <- fun_similarity(paracou_6_fundist)
# integer and non-integer q's
orders <- (0:6) / 2
testthat::test_that(
"No estimator fails", {
testthat::skip_on_cran()
# Estimate diversity systematically
div_similarity.list <- lapply(
# All estimators
eval(formals(divent:::div_similarity.numeric)$estimator),
function(estimator) {
the_list <-lapply(
# All probability estimators
eval(formals(divent:::div_similarity.numeric)$probability_estimator),
function(probability_estimator) {
the_list <-lapply(
# All q's
orders,
function(q) {
the_list <- lapply(
# All unveilings
eval(formals(divent:::div_similarity.numeric)$unveiling),
function(unveiling) {
# print(paste(estimator, probability_estimator, unveiling, richness_estimator, q))
suppressWarnings(
div_similarity(
abundances,
similarities = Z,
q = q,
estimator = estimator,
probability_estimator = probability_estimator,
unveiling = unveiling,
as_numeric = FALSE,
check_arguments = TRUE
)
)
}
)
# Make a dataframe with the list to avoid nested lists
the_df <- do.call(rbind, the_list)
}
)
# Make a dataframe with the list to avoid nested lists
the_df <- do.call(rbind, the_list)
}
)
# Make a dataframe with the list to avoid nested lists
the_df <- do.call(rbind, the_list)
}
)
# Coerce to a dataframe
div_similarity.dataframe <- do.call(rbind, div_similarity.list)
# The min value must be UnveilJ / Chao2013 without unveiling
testthat::expect_equal(
min(div_similarity.dataframe$diversity, na.rm = TRUE),
div_similarity(
abundances,
similarities = Z,
q = 0.5,
probability_estimator = "Chao2013",
unveiling = "none"
)$diversity
)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.