Nothing
#' Heart Failure Data
#'
#' @description
#' A dataset containing the ages and other attributes of almost 300 cases.
#'
#' @details
#' Heart failure is a common event caused by Cardiovascular diseasess and this dataset contains 12 features that can be used to predict mortality by heart failure.
#'
#' @format A data frame with 299 rows and 13 variables. The variables are as follows:
#' \describe{
#' \item{age}{patient's age.}
#' \item{anaemia}{decrease of red blood cells or hemoglobin (boolean), Yes, No.}
#' \item{cpk_enzyme}{level of the CPK(creatinine phosphokinase) enzyme in the blood (mcg/L).}
#' \item{diabetes}{if the patient has diabetes (boolean), Yes, No.}
#' \item{ejection_fraction}{percentage of blood leaving the heart at each contraction (percentage).}
#' \item{hblood_pressure}{high_blood_pressure. if the patient has hypertension (boolean), Yes, No.}
#' \item{platelets}{platelets in the blood (kiloplatelets/mL).}
#' \item{creatinine}{level of serum creatinine in the blood (mg/dL).}
#' \item{sodium}{level of serum sodium in the blood (mEq/L).}
#' \item{sex}{patient's sex (binary), Male, Female.}
#' \item{smoking}{if the patient smokes or not (boolean), Yes, No.}
#' \item{time}{follow-up period (days).}
#' \item{death_event}{if the patient deceased during the follow-up period (boolean), Yes, No.}
#' }
#' @docType data
#' @keywords datasets
#' @name heartfailure
#' @usage data(heartfailure)
#' @references {
#' Davide Chicco, Giuseppe Jurman: Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics and Decision Making 20, 16 (2020).
#' <https://doi.org/10.1186/s12911-020-1023-5>
#' }
#' @source {
#' "Heart Failure Prediction" in Kaggle <https://www.kaggle.com/andrewmvd/heart-failure-clinical-data>, License : CC BY 4.0
#' }
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.