inst/doc/EDA.R

## ----environment, echo = FALSE, message = FALSE, warning=FALSE----------------
knitr::opts_chunk$set(collapse = TRUE, comment = "", out.width = "600px", dpi = 70)
options(tibble.print_min = 4L, tibble.print_max = 4L)

library(dlookr)
library(dplyr)
library(ggplot2)

## ----import_data, warning=FALSE-----------------------------------------------
str(Carseats)

## ----missing------------------------------------------------------------------
carseats <- Carseats

suppressWarnings(RNGversion("3.5.0"))
set.seed(123)
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA

suppressWarnings(RNGversion("3.5.0"))
set.seed(456)
carseats[sample(seq(NROW(carseats)), 10), "Urban"] <- NA

## ----describe-----------------------------------------------------------------
describe(carseats)

## ----describes2---------------------------------------------------------------
# Select columns by name
describe(carseats, Sales, CompPrice, Income)
# Select all columns between year and day (include)
describe(carseats, Sales:Income)
# Select all columns except those from year to day (exclude)
describe(carseats, -(Sales:Income))

## ----describe_pipe------------------------------------------------------------
carseats %>%
  describe() %>%
  select(described_variables, skewness, mean, p25, p50, p75) %>% 
  filter(!is.na(skewness)) %>% 
  arrange(desc(abs(skewness)))

## ----describe_pipe2-----------------------------------------------------------
carseats %>%
  group_by(US) %>% 
  describe(Sales, Income) 

## ----describe_pipe3-----------------------------------------------------------
carseats %>%
  group_by(US, Urban) %>% 
  describe(Sales, Income) 

## ----normality----------------------------------------------------------------
normality(carseats)

## ----normality2---------------------------------------------------------------
# Select columns by name
normality(carseats, Sales, CompPrice, Income)

# Select all columns between year and day (inclusive)
normality(carseats, Sales:Income)

# Select all columns except those from year to day (inclusive)
normality(carseats, -(Sales:Income))

## ----normality_pipe-----------------------------------------------------------
library(dplyr)

carseats %>%
  normality() %>%
  filter(p_value <= 0.01) %>% 
  arrange(abs(p_value))

## ----normality_pipe2----------------------------------------------------------
carseats %>%
  group_by(ShelveLoc, US) %>%
  normality(Income) %>% 
  arrange(desc(p_value))

## ----normality_pipe3----------------------------------------------------------
carseats %>%
  mutate(log_income = log(Income)) %>%
  group_by(ShelveLoc, US) %>%
  normality(log_income) %>%
  filter(p_value > 0.01)

## ----plot_normality, fig.align='center', fig.width = 6, fig.height = 4--------
# Select columns by name
plot_normality(carseats, Sales, CompPrice)

## ----plot_normality2, fig.align='center', fig.width = 6, fig.height = 4, eval=FALSE----
# carseats %>%
#   filter(ShelveLoc == "Good") %>%
#   group_by(US) %>%
#   plot_normality(Income)

## ----correlate----------------------------------------------------------------
correlate(carseats)

## ----correlate2---------------------------------------------------------------
# Select columns by name
correlate(carseats, Sales, CompPrice, Income)

# Select all columns between year and day (include)
correlate(carseats, Sales:Income)

# Select all columns except those from year to day (exclude)
correlate(carseats, -(Sales:Income))

## ----correlate3---------------------------------------------------------------
carseats %>%
  correlate(Sales:Income) %>%
  filter(as.integer(var1) > as.integer(var2))

## ----correlate4---------------------------------------------------------------
tab_corr <- carseats %>%
  filter(ShelveLoc == "Good") %>%
  group_by(Urban, US) %>%
  correlate(Sales) %>%
  filter(abs(coef_corr) > 0.5)

tab_corr

## ----plot_correlate, fig.align='center', fig.width = 6, fig.height = 4--------
carseats %>% 
  correlate() %>% 
  plot()

## ----plot_correlate2, fig.align='center', fig.width = 6, fig.height = 4, eval=TRUE----
# Select columns by name
correlate(carseats, Sales, Price) %>% 
  plot()

## ----plot_correlate3, fig.align='center', fig.width = 6, fig.height = 4, warning=FALSE, eval=TRUE----
carseats %>%
  filter(ShelveLoc == "Good") %>%
  group_by(Urban) %>%
  correlate() %>%
  plot() 

## ----target_by----------------------------------------------------------------
categ <- target_by(carseats, US)

## ----target_by2---------------------------------------------------------------
# If the variable of interest is a numerical variable
cat_num <- relate(categ, Sales)
cat_num
summary(cat_num)

## ----target_by3, fig.align='center', fig.width = 6, fig.height = 4, warning=FALSE----
plot(cat_num)

## ----target_by4---------------------------------------------------------------
# If the variable of interest is a categorical variable
cat_cat <- relate(categ, ShelveLoc)
cat_cat
summary(cat_cat)

## ----target_by5, fig.align='center', fig.width = 6, fig.height = 4, warning=FALSE----
plot(cat_cat)

## ----target_by6---------------------------------------------------------------
# If the variable of interest is a numerical variable
num <- target_by(carseats, Sales)

## ----target_by7---------------------------------------------------------------
# If the variable of interest is a numerical variable
num_num <- relate(num, Price)
num_num
summary(num_num)

## ----target_by8, fig.align='center', fig.width = 6, fig.height = 4, warning=FALSE----
plot(num_num)

## ----target_by8_2, fig.align='center', fig.width = 6, fig.height = 4, warning=FALSE----
plot(num_num, hex_thres = 350)

## ----target_by9---------------------------------------------------------------
# If the variable of interest is a categorical variable
num_cat <- relate(num, ShelveLoc)
num_cat
summary(num_cat)

## ----target_by10, fig.align='center', fig.width = 6, fig.height = 4, warning=FALSE----
plot(num_cat)

## ----eda_web_report, eval=FALSE-----------------------------------------------
# heartfailure %>%
#   eda_web_report(target = "death_event", subtitle = "heartfailure",
#                  output_dir = "./", output_file = "EDA.html", theme = "blue")

## ----eda_web_title, echo=FALSE, out.width='80%', fig.align='center', fig.pos="!h", fig.cap="The part of the report"----
knitr::include_graphics('img/eda_web_title.jpg')

## ----eda_paged_report, eval=FALSE---------------------------------------------
# heartfailure %>%
#   eda_paged_report(target = "death_event", subtitle = "heartfailure",
#                    output_dir = "./", output_file = "EDA.pdf", theme = "blue")

## ----eda_paged_cover, echo=FALSE, out.width='80%', fig.align='center', fig.pos="!h", fig.cap="The part of the report"----
knitr::include_graphics('img/eda_paged_cover.jpg')

## ----eda_paged_cntent, echo=FALSE, out.width='80%', fig.align='center', fig.pos="!h", fig.cap="The dynamic contents of the report"----
knitr::include_graphics('img/eda_paged_content.jpg')

## ----dbi_table, warning=FALSE, message=FALSE, eval=FALSE----------------------
# library(dplyr)
# 
# carseats <- Carseats
# carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
# carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA
# 
# # connect DBMS
# con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")
# 
# # copy carseats to the DBMS with a table named TB_CARSEATS
# copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

## ----dbi_describe, eval=FALSE-------------------------------------------------
# # Positive values select variables
# con_sqlite %>%
#   tbl("TB_CARSEATS") %>%
#   describe(Sales, CompPrice, Income)
# 
# # Negative values to drop variables, and In-memory mode and collect size is 200
# con_sqlite %>%
#   tbl("TB_CARSEATS") %>%
#   describe(-Sales, -CompPrice, -Income, collect_size = 200)
# 
# # Find the statistic of all numerical variables by 'ShelveLoc' and 'US',
# # and extract only those with the 'ShelveLoc' variable level as "Good".
# con_sqlite %>%
#   tbl("TB_CARSEATS") %>%
#   group_by(ShelveLoc, US) %>%
#   describe() %>%
#   filter(ShelveLoc == "Good")
# 
# # extract only those with 'Urban' variable level is "Yes",
# # and find 'Sales' statistics by 'ShelveLoc' and 'US'
# con_sqlite %>%
#   tbl("TB_CARSEATS") %>%
#   filter(Urban == "Yes") %>%
#   group_by(ShelveLoc, US) %>%
#   describe(Sales)

## ----dbi_normality, eval=FALSE------------------------------------------------
# # Test all numerical variables by 'ShelveLoc' and 'US',
# # and extract only those with the 'ShelveLoc' variable level is "Good".
# con_sqlite %>%
#   tbl("TB_CARSEATS") %>%
#  group_by(ShelveLoc, US) %>%
#  normality() %>%
#  filter(ShelveLoc == "Good")
# 
# # extract only those with 'Urban' variable level is "Yes",
# # and test 'Sales' by 'ShelveLoc' and 'US'
# con_sqlite %>%
#   tbl("TB_CARSEATS") %>%
#  filter(Urban == "Yes") %>%
#  group_by(ShelveLoc, US) %>%
#  normality(Sales)
# 
# # Test log(Income) variables by 'ShelveLoc' and 'US',
# # and extract only p.value greater than 0.01.
# 
# # SQLite extension functions for log transformation
# RSQLite::initExtension(con_sqlite)
# 
# con_sqlite %>%
#   tbl("TB_CARSEATS") %>%
#  mutate(log_income = log(Income)) %>%
#  group_by(ShelveLoc, US) %>%
#  normality(log_income) %>%
#  filter(p_value > 0.01)

## ----plot_normality_dbi, fig.align='center', fig.width = 6, fig.height = 4, eval=FALSE, eval=FALSE----
# # Extract only those with the 'ShelveLoc' variable level is "Good",
# # and plot 'Income' by 'US'
# # The result is the same as the data.frame, but not displayed here. Reference above in document.
# con_sqlite %>%
#   tbl("TB_CARSEATS") %>%
#   filter(ShelveLoc == "Good") %>%
#   group_by(US) %>%
#   plot_normality(Income)

## ----dbi_correlation, eval=FALSE----------------------------------------------
# # Correlation coefficient
# # that eliminates redundant combination of variables
# con_sqlite %>%
#   tbl("TB_CARSEATS") %>%
#   correlate() %>%
#   filter(as.integer(var1) > as.integer(var2))
# 
# con_sqlite %>%
#   tbl("TB_CARSEATS") %>%
#   correlate(Sales, Price) %>%
#   filter(as.integer(var1) > as.integer(var2))
# 
# # Compute the correlation coefficient of the Sales variable by 'ShelveLoc'
# # and 'US' variables. And extract only those with absolute
# # value of the correlation coefficient is more significant than 0.5
# con_sqlite %>%
#   tbl("TB_CARSEATS") %>%
#   group_by(ShelveLoc, US) %>%
#   correlate(Sales) %>%
#   filter(abs(coef_corr) >= 0.5)
# 
# # Extract only those with the 'ShelveLoc' variable level is "Good",
# # and compute the correlation coefficient of the 'Sales' variable
# # by 'Urban' and 'US' variables.
# # And the correlation coefficient is negative and smaller than 0.5
# con_sqlite %>%
#   tbl("TB_CARSEATS") %>%
#   filter(ShelveLoc == "Good") %>%
#   group_by(Urban, US) %>%
#   correlate(Sales) %>%
#   filter(coef_corr < 0) %>%
#   filter(abs(coef_corr) > 0.5)

## ----plot_correlation_dbi, fig.align='center', fig.width = 6, fig.height = 4, warning=FALSE, eval=FALSE----
# # Extract only those with 'ShelveLoc' variable level is "Good",
# # and visualize correlation plot of 'Sales' variable by 'Urban'
# # and 'US' variables.
# # The result is the same as the data.frame, but not displayed here. Reference above in document.
# con_sqlite %>%
#   tbl("TB_CARSEATS") %>%
#   filter(ShelveLoc == "Good") %>%
#   group_by(Urban) %>%
#   correlate() %>%
#   plot(Sales)

## ----dbi_ctarget_by, eval=FALSE-----------------------------------------------
# # If the target variable is a categorical variable
# categ <- target_by(con_sqlite %>% tbl("TB_CARSEATS") , US)
# 
# # If the variable of interest is a numerical variable
# cat_num <- relate(categ, Sales)
# cat_num
# summary(cat_num)

## ----plot_target_by_dbi, fig.align='center', fig.align='center', fig.width = 6, fig.height = 4, eval=FALSE----
# # The result is the same as the data.frame, but not displayed here. Reference above in document.
# plot(cat_num)

## ----dbi_eda_report, eval=FALSE-----------------------------------------------
# # create a web report file.
# con_sqlite %>%
#   tbl("TB_CARSEATS") %>%
#   eda_web_report()
# 
# # create a pdf file. the file name is EDA.pdf, and the collect size is 350
# con_sqlite %>%
#   tbl("TB_CARSEATS") %>%
#   eda_paged_report(collect_size = 350, output_file = "EDA.pdf")

Try the dlookr package in your browser

Any scripts or data that you put into this service are public.

dlookr documentation built on Aug. 24, 2025, 9:07 a.m.