| GoF | R Documentation | 
Goodness-of-fit test statistics are computed based on the Cramér–von Mises (CvM) and Kolmogorov–Smirnov (KS) test statistics proposed in Emura et al. (2015). P-value and critical values with significance levels of 0.01, 0.05 and 0.10 are also computed.
GoF(u.trunc, y.trunc, v.trunc,epsilon=1e-08,F0,B=500,F.plot = TRUE)
| u.trunc | lower truncation limit | 
| y.trunc | variable of interest | 
| v.trunc | upper truncation limit | 
| epsilon | error tolerance for the self-consistency algorithm | 
| F0 | a function for the null distribution function | 
| B | the number of bootstrap resamples (B=500 is the default) | 
| F.plot | model diagnostic plot | 
Details are seen from Emura et al.(2015).
| CvM | Test statistics, P-value, and critical values for the Cramér–von Mises (CvM) test | 
| KS | Test statistics, P-value, and critical values for the Kolmogorov–Smirnov (KS) test | 
Takeshi Emura
Emura T, Konno Y, Michimae H (2015). Statistical inference based on the nonparametric maximum likelihood estimator under double-truncation. Lifetime Data Analysis 21: 397-418
## A data example from Efron and Petrosian (1999) ## 
y.trunc=c(0.75, 1.25, 1.50, 1.05, 2.40, 2.50, 2.25)
u.trunc=c(0.4, 0.8, 0.0, 0.3, 1.1, 2.3, 1.3)
v.trunc=c(2.0, 1.8, 2.3, 1.4, 3.0, 3.4, 2.6)
F0=function(x){x/3}
GoF(u.trunc,y.trunc,v.trunc,F0=F0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.