Nothing
# test anova.dcca, anova_species, anova_sites
data("dune_trait_env")
# rownames are carried forward in results
rownames(dune_trait_env$comm) <- dune_trait_env$comm$Sites
# use vegan::rda in step 2
divide <- FALSE # divide by site.totals if TRUE
Y <- dune_trait_env$comm[, -1] # must delete "Sites"
# delete "Species", "Species_abbr" from traits and
# use all remaining variables due to formulaTraits = ~. (the default)
traits <- dune_trait_env$traits
envir <- dune_trait_env$envir
# test a normal model
modDivF1a <- dc_CA(formulaEnv = ~ A1 + Moist + Mag + Use + Manure,
formulaTraits = ~ SLA + Height + LDMC + Seedmass + Lifespan,
response = Y,
dataEnv = envir,
dataTraits = traits,
divideBySiteTotals = divide,
verbose = FALSE)
set.seed(123)
modDivF1a_an <- anova(modDivF1a)
expect_equal_to_reference(modDivF1a_an, "modDivF1a_an")
set.seed(123)
expect_equivalent(anova_species(modDivF1a)$table, modDivF1a_an$species)
# equivalent only for very significant tests; the seed for anova_sites cannot
# easily be set identical to that for the sites test in anova.dcca.
expect_equivalent(anova_sites(modDivF1a)$table, modDivF1a_an$sites)
# test quant variable only, 1 quant trait
modDivFq11<- dc_CA(formulaEnv = ~Manure,
formulaTraits = ~SLA,
response = Y, dataEnv =envir, dataTraits = traits,
divideBySiteTotals = divide, verbose = FALSE)
set.seed(123)
modDivFq11_an <- anova(modDivFq11)
expect_equal_to_reference(modDivFq11_an, "modDivFq11_an")
set.seed(123)
# test of the by axis of 1 single predictor.
expect_equivalent(anova(modDivFq11, by="axis")$species, modDivFq11_an$species)
# check how douconca manages collinear models
# A11 collinear variable
envir$Sites <- factor(dune_trait_env$envir$Sites)
envir$A11 <- envir$A1
expect_silent(
modDivF_dccaA1 <- dc_CA(formulaEnv = ~ A1,
formulaTraits = ~ SLA + Height + LDMC + Seedmass + Lifespan,
response = Y, dataEnv = envir, dataTraits = traits,
divideBySiteTotals = divide,
verbose = FALSE))
expect_stdout(
modDivF_dccaA11 <- dc_CA(formulaEnv = ~ A1 + A11,
formulaTraits = ~ SLA + Height + LDMC + Seedmass + Lifespan,
response = Y, dataEnv = envir, dataTraits = traits,
divideBySiteTotals = divide,
verbose = FALSE))
set.seed(237)
anA1 <- anova(modDivF_dccaA1)
set.seed(237)
anA11<- anova(modDivF_dccaA11)
expect_equivalent(anA1, anA11)
set.seed(237)
expect_equivalent(anova_species(modDivF_dccaA11)$table[, 1:5],
anA11$species[, 1:5])
# full fit
modDivF_dcca_near_singular_species <-
dc_CA(formulaEnv = ~A1 + Manure + Condition(Mag),
formulaTraits = ~Species,
response = Y,
dataEnv = envir,
dataTraits = traits,
divideBySiteTotals = FALSE,
verbose = FALSE)
set.seed(37)
anova_dccaDivF <- anova(modDivF_dccaA11)
expect_equal_to_reference(anova_dccaDivF, "anova_dccaDivF")
set.seed(159)
an_env <- anova_sites(modDivF_dcca_near_singular_species)
set.seed(159)
an_env2 <- anova(wrda(modDivF_dcca_near_singular_species$formulaEnv,
response=modDivF_dcca_near_singular_species$CWMs_orthonormal_traits,
data = modDivF_dcca_near_singular_species$data$dataEnv,
weights = modDivF_dcca_near_singular_species$weights$rows))
expect_equivalent(an_env$table, an_env2$table)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.