crit.dpcid: Akaike information criterion (AIC) and Bayesian information...

Description Usage Arguments Details Value References Examples

Description

aic.dpcid returns the AIC values corresponding to the given lambda1 and lambda2 values for the DPCID.

Usage

1
crit.dpcid(A,B,l1,seq_l2,wd1,wd2,rho1_init,rho2_init,niter=1000,tol=1e-6,scaling=FALSE)

Arguments

A

An observed dataset from the first condition.

B

An observed dataset from the second condition.

l1

The selected lambda1 in cv.lambda1.

seq_l2

A sequence of tuning parameter lambda2 for the fusion penalty

wd1

The estimate of diagonal elements of the precision matrix of the first condition.

wd2

The estimate of diagonal elements of the precision matrix of the second condition.

rho1_init

An initial value for the partial correlation matrix of the first condition.

rho2_init

An initial value for the partial correlation matrix of the second condition.

niter

A total number of iterations in the block-wise coordinate descent.

tol

A tolerance for the convergence.

scaling

a logical flag for scaling variable to have unit variance. Default is FALSE.

Details

crit.dpcid needs the estimates of the diagonal elements of two precision matrices.

Value

aic

A vector of aic values corresponding to a given sequence of tuning paramters.

bic

A vector of bic values corresponding to a given sequence of tuning paramters.

References

Yu, D., Lee, S. H., Lim, J., Xiao, G., Craddock, R. C., and Biswal, B. B. (2018). Fused Lasso Regression for Identifying Differential Correlations in Brain Connectome Graphs. Statistical Analysis and Data Mining, 11, 203–226.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
library(MASS)

## True precision matrix
omega1 <- matrix(0,5,5)
omega1[1,2] <- omega1[1,3] <- omega1[1,4] <- 1
omega1[2,3] <- omega1[3,4] <- 1.5
omega1 <- t(omega1) + omega1
diag(omega1) <- 3

omega2 <- matrix(0,5,5)
omega2[1,3] <- omega2[1,5] <- 1.5
omega2[2,3] <- omega2[2,4] <- 1.5
omega2 <- t(omega2) + omega2
diag(omega2) <- 3

Sig1 = solve(omega1)
Sig2 = solve(omega2)
X1 = mvrnorm(50,rep(0,5),Sig1)
X2 = mvrnorm(50,rep(0,5),Sig2)

A = scale(X1,center=TRUE,scale=FALSE)
B = scale(X2,center=TRUE,scale=FALSE)

shr_res = lshr.cov(A)
PM1 = shr_res$shr_inv

shr_res = lshr.cov(B)
PM2 = shr_res$shr_inv

wd1 = diag(PM1)
wd2 = diag(PM2)

rho1_init = -(1/sqrt(wd1))*PM1
rho1_init = t( 1/sqrt(wd1)*t(rho1_init))
diag(rho1_init) = 1

rho2_init = -(1/sqrt(wd2))*PM2
rho2_init = t( 1/sqrt(wd2)*t(rho2_init))
diag(rho2_init) = 1

l1 = 0.3
seq_l2 = seq(0.1,1,by=0.2)

crit =crit.dpcid(A,B,l1,seq_l2,wd1,wd2,rho1_init,rho2_init)
crit$aic
crit$bic

dpcid documentation built on May 2, 2019, 8:55 a.m.

Related to crit.dpcid in dpcid...