Nothing
#' @name centree
#' @title Ward-dendrogeam of centroids of partitioning models
#' @description
#' Plots the Ward-dendrogram of the centroids of a partitioning model. The plot is useful as a diagnosis tool for the choice o the number of clusters.
#'
#' @usage centree(drclust_out)
#'
#' @param drclust_out Output of either doublekm, redkm, factkm or dpcakm.
#'
#' @return \item{centroids-dkm}{Centroids x centroids distance matrix.}
#'
#' @author Ionel Prunila, Maurizio Vichi
#'
#' @references
#' Ward J. H. (1963) "Hierarchical Grouping to Optimize an Objective Function" <doi:10.1080/01621459.1963.10500845>
#'
#' @examples
#' # Iris data
#' # Loading the numeric variables of iris data
#' iris <- as.matrix(iris[,-5])
#'
#' dc_out <- dpcakm(iris, 20, 3)
#' d <- centree(dc_out)
#'
#' @export
centree = function(drclust_out){
tryCatch(
expr = {
centers = drclust_out$centers
if(nrow(centers)<3)
stop("The dendrogram can be built from at least 3 centroids")
if(missing(centers))
stop("The centroids must be given")
if(is.null(centers))
stop("The centroid matrix is empty")
if(any(is.na(centers)))
stop("The centroid matrix must not contain NA values")
if(!is.numeric(centers))
stop("The centroid matrix is not numeric")
d <- dist(centers)
hc <- hclust(d, method = "ward.D")
plot(hc, xlab = "centroids", ylab = "Increase in the loss-function", main = "Centroids Dendrogram")
return("centroids-dm" = d)
}
,
warning = function(w){
message("Please provide the proper argument to the function")
}
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.