Nothing
## ---- eval=FALSE---------------------------------------------------------
# df <- read_csv("waterData.csv")
## ---- eval=FALSE---------------------------------------------------------
# df1 <- read_csv("waterData_Jan17.csv")
# df2 <- read_csv("waterData_Feb17.csv")
#
# df <- bind_rows(df1, df2)
## ---- eval=FALSE---------------------------------------------------------
# > summary(df$SpCond)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.7450 0.7520 0.7670 0.7719 0.7900 0.8180
# > summary(df$SpCond_Corr)
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.7495 0.7677 0.8018 0.8067 0.8422 0.8872
## ---- eval=FALSE---------------------------------------------------------
# library(ggplot2) # data visualization
# library(scales) # date/time scales for plots
#
# library(dplyr) # data wrangling
# library(tidyr) # reshaping data
# library(stringr) # tools for strings
## ---- eval=FALSE---------------------------------------------------------
# ggplot(data = df) +
# geom_histogram(mapping = aes(x = pH), bins = 10)
## ---- eval=FALSE---------------------------------------------------------
# df %>%
# mutate(dateTime = str_c(Date, Time, sep = " ", collapse = NULL)) %>%
# mutate(dateTime = as.POSIXct(dateTime, format = "%m/%d/%Y %H:%M:%S")) %>%
# ggplot() +
# geom_line(mapping = aes(x = dateTime, y = SpCond))
## ---- eval=FALSE---------------------------------------------------------
# > df %>%
# + mutate(dateTime = str_c(Date, Time, sep = " ", collapse = NULL)) %>%
# + mutate(dateTime = as.POSIXct(dateTime, format = "%m/%d/%Y %H:%M:%S")) %>%
# + select(dateTime, SpCond, SpCond_Corr) %>%
# + gather(key = "measure", value = "value", SpCond, SpCond_Corr) %>%
# + arrange(dateTime)
# # A tibble: 3,024 x 3
# dateTime measure value
# <dttm> <chr> <dbl>
# 1 2015-09-18 13:00:52 SpCond 0.7490000
# 2 2015-09-18 13:00:52 SpCond_Corr 0.7494559
# 3 2015-09-18 13:05:52 SpCond 0.7490000
# 4 2015-09-18 13:05:52 SpCond_Corr 0.7495014
# 5 2015-09-18 13:10:52 SpCond 0.7500000
# 6 2015-09-18 13:10:52 SpCond_Corr 0.7505470
# 7 2015-09-18 13:15:52 SpCond 0.7500000
# 8 2015-09-18 13:15:52 SpCond_Corr 0.7505925
# 9 2015-09-18 13:20:51 SpCond 0.7500000
# 10 2015-09-18 13:20:51 SpCond_Corr 0.7506379
# # ... with 3,014 more rows
## ---- eval=FALSE---------------------------------------------------------
# df %>%
# mutate(dateTime = str_c(Date, Time, sep = " ", collapse = NULL)) %>%
# mutate(dateTime = as.POSIXct(dateTime, format = "%m/%d/%Y %H:%M:%S")) %>%
# select(dateTime, SpCond, SpCond_Corr) %>%
# gather(key = "measure", value = "value", SpCond, SpCond_Corr) %>%
# ggplot() +
# geom_line(mapping = aes(x = dateTime, y = value, group = measure, color = measure))
## ---- eval=FALSE---------------------------------------------------------
# df %>%
# mutate(dateTime = str_c(Date, Time, sep = " ", collapse = NULL)) %>%
# mutate(dateTime = as.POSIXct(dateTime, format = "%m/%d/%Y %H:%M:%S")) %>%
# select(dateTime, SpCond, SpCond_Corr) %>%
# gather(key = "measure", value = "value", SpCond, SpCond_Corr) %>%
# ggplot() +
# geom_smooth(mapping = aes(x = dateTime, y = value, group = measure, color = measure))
## ---- eval=FALSE---------------------------------------------------------
# ggplot(data = df) +
# geom_point(mapping = aes(x = SpCond_Corr, y = Chloride_Corr))
## ---- eval=FALSE---------------------------------------------------------
# ggplot(data = df) +
# geom_point(mapping = aes(x = SpCond_Corr, y = Chloride_Corr, color = Date))
## ---- eval=FALSE---------------------------------------------------------
# ggplot(data = df) +
# geom_point(mapping = aes(x = SpCond_Corr, y = Chloride_Corr, color = Date)) +
# facet_wrap(~ Date) +
# theme(legend.position="none")
## ---- eval=FALSE---------------------------------------------------------
# ggplot(data = df) +
# geom_point(mapping = aes(x = SpCond_Corr, y = Chloride_Corr), color = "#cccccc") +
# geom_smooth(mapping = aes(x = SpCond_Corr, y = Chloride_Corr, color = Date)) +
# facet_wrap(~ Date) +
# theme(legend.position="none")
## ---- eval=FALSE---------------------------------------------------------
# ggplot(data = df, mapping = aes(x = SpCond_Corr, y = Chloride_Corr, color = Date)) +
# geom_point(color = "#cccccc") +
# geom_smooth() +
# facet_wrap(~ Date)
## ---- eval=FALSE---------------------------------------------------------
# df %>%
# mutate(secondHalf = ifelse(Date == "9/21/2015" | Date == "9/22/2015" | Date == "9/23/2015", TRUE, FALSE)) %>%
# ggplot() +
# geom_boxplot(mapping = aes(x = secondHalf, y = pH_Corr))
## ---- eval=FALSE---------------------------------------------------------
# df %>%
# mutate(dateTime = str_c(Date, Time, sep = " ", collapse = NULL)) %>%
# mutate(dateTime = as.POSIXct(dateTime, format = "%m/%d/%Y %H:%M:%S")) %>%
# select(dateTime, SpCond, SpCond_Corr) %>%
# gather(key = "measure", value = "value", SpCond, SpCond_Corr) %>%
# ggplot() +
# geom_smooth(mapping = aes(x = dateTime, y = value, group = measure, color = measure)) +
# scale_x_datetime(labels = date_format("%m-%d-%Y"), date_breaks = "1 day") +
# labs(
# title = "Comparison of Corrected and Uncorrected Specific Conductance Values",
# subtitle = "Example Creek, Eastern Missouri",
# x = "Date",
# y = "Specific Conductance",
# caption = "Smoothed using a generalized additive model; \nPlot produced by the Saint Louis University Hydrology and Geochemistry Research Lab",
# color = "Series"
# ) +
# scale_colour_discrete(labels=c("Raw Conductivity", "Corrected Conductivity"))
## ---- eval=FALSE---------------------------------------------------------
# ggsave("plotName.png", width = 800, height = 600, units = "mm", dpi = 300)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.