Using dropout

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

Introduction

Survey data frequently faces the issue of dropout — situations where participants leave sections of the survey incomplete. Effectively managing dropouts is key to preserving data quality and gaining a deeper understanding of participants' response patterns. The dropout package addresses this challenge by providing tools to analyze and interpret participant behavior throughout the survey process.

Use cases of the dropout package

library(dropout)

Quantifying Dropout with drop_summary

The drop_summary function provides an overview of where and to what extent participants tend to stop answering questions. It highlights patterns of missing values, such as whether participants are skipping specific questions or entire sections of the survey.

drop_summary(flying)

Detecting Specific Dropouts with drop_detect

For a more detailed analysis, the drop_detect function identifies individual participants who dropped out of the survey. It returns the index of the participant and the column where the dropout occurred, helping you focus on the critical dropout points.

drop_detect(flying) |>
  head()

Data Cleaning Based on Dropout Information

With the output from drop_detect, you can refine your data by filtering participants. For instance, you may choose to retain only those who completed most of the survey or analyze patterns of early dropout for further insights.



Try the dropout package in your browser

Any scripts or data that you put into this service are public.

dropout documentation built on Nov. 2, 2024, 1:12 a.m.