Nothing
#' @name drugDemand-package
#' @aliases drugDemand-package
#' @keywords internal
#' "_PACKAGE"
#'
#' @title Drug Demand Forecasting
#'
#' @description Performs drug demand forecasting by modeling drug
#' dispensing data while taking into account predicted enrollment
#' and treatment discontinuation dates. The gap time between
#' randomization and the first drug dispensing visit is modeled
#' using interval-censored exponential, Weibull, log-logistic, or
#' log-normal distributions
#' (Anderson-Bergman (2017) \doi{10.18637/jss.v081.i12}).
#' The number of skipped visits is modeled using Poisson,
#' zero-inflated Poisson, or negative binomial distributions
#' (Zeileis, Kleiber & Jackman (2008) \doi{10.18637/jss.v027.i08}).
#' The gap time between two consecutive drug dispensing visits
#' given the number of skipped visits is modeled using linear
#' regression based on least squares or least absolute
#' deviations (Birkes & Dodge (1993, ISBN:0-471-56881-3)).
#' The number of dispensed doses is modeled using linear
#' or linear mixed-effects models
#' (McCulloch & Searle (2001, ISBN:0-471-19364-X)).
#'
#' @details In clinical trials, patients do not always follow
#' protocol-specified visit and drug dispensing schedules.
#' Patients may encounter delays in their drug dispensing
#' appointments, skip visits altogether, or receive doses
#' different from the protocol-specified target.
#' Relying solely on protocol-based predictions tends to result
#' in an overestimation of drug demand. Consequently, we propose
#' a method that models observed drug dispensing data,
#' thereby accounting for these deviations.
#'
#' * \code{k0}: The number of skipped visits between randomization
#' and the first drug dispensing visit.
#'
#' * \code{t0}: The gap time between randomization and the first
#' drug dispensing visit when there is no visit skipping.
#'
#' * \code{t1}: The gap time between randomization and the first
#' drug dispensing visit when there is visit skipping.
#'
#' * \code{ki}: The number of skipped visits between two consecutive
#' drug dispensing visits.
#'
#' * \code{ti}: The gap time between two consecutive drug
#' dispensing visits.
#'
#' * \code{di}: The dispensed doses at drug dispensing visits.
#'
#' For \code{k0} and \code{ki}, we explore several modeling options,
#' including constant, Poisson, zero-inflated Poisson (ZIP), and
#' negative binomial distributions.
#'
#' For \code{t0}, we consider various models such as constant,
#' exponential, Weibull, log-logistic, and log-normal.
#'
#' For \code{t1} (given \code{k0}) and \code{ti} (given \code{ki}),
#' we apply linear regression models using least squares or
#' least absolute deviations.
#'
#' For \code{di}, we evaluate constant, linear, and linear
#' mixed-effects models with subject random effects.
#'
#' Once the dosing models are fitted to the observed drug
#' dispensing data, we draw model parameters from their
#' approximate posterior distributions. Subsequently, we simulate
#' drug dispensing data after cutoff for both ongoing and new patients.
#'
#' Finally, we estimate the dose to dispense based on the
#' simulated data.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @references
#'
#' Clifford Anderson-Bergman.
#' icenReg: Regression Models for Interval Censored Data in R.
#' J Stat Softw. 2017, Volume 81, Issue 12.
#'
#' Achim Zeileis, Christian Kleiber, and Simon Jackman.
#' Regression models for count data in R.
#' J Stat Softw. 2008, Volume 27, Issue 8.
#'
#' David Birkes and Yadolah Dodge.
#' Alternative Methods of Regression.
#' John Wiley & Sons: New York, 1993.
#'
#' Charles E. McCulloch and Shayler R. Searle.
#' Generalized, Linear, and Mixed Models.
#' John Wiley & Sons: New York, 2001.
#'
#' @useDynLib drugDemand, .registration = TRUE
#' @importFrom Rcpp evalCpp
#' @importFrom mvtnorm pmvnorm rmvnorm
#' @importFrom dplyr %>% arrange as_tibble bind_cols bind_rows
#' cross_join cur_group_id filter group_by inner_join lead left_join
#' mutate n rename right_join row_number select slice summarise tibble
#' ungroup
#' @importFrom plotly add_trace layout plot_ly
#' @importFrom stringr str_to_title
#' @importFrom MASS glm.nb
#' @importFrom nlme lme
#' @importFrom L1pack lad
#' @importFrom parallel detectCores makeCluster
#' @importFrom foreach %do% %dopar% foreach
#' @importFrom doParallel registerDoParallel
#' @importFrom doRNG %dorng%
#' @importFrom survival Surv survfit survreg
#' @importFrom stats AIC BIC dnbinom dpois glm lm logLik optim optimHess
#' pexp plogis plnorm pnorm poisson pweibull quantile rchisq rgamma
#' rmultinom rnorm rstandard var vcov
#' @importFrom erify check_bool check_class check_content check_n
#' @importFrom rlang .data
#' @importFrom purrr map_dfr
#' @importFrom eventPred getPrediction
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.