Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## -----------------------------------------------------------------------------
library(drugdevelopR)
## ----eval = FALSE-------------------------------------------------------------
# res <- optimal_bias(w = 0.3, # define parameters for prior
# hr1 = 0.75, hr2 = 0.8, id1 = 210, id2 = 420, # (https://web.imbi.uni-heidelberg.de/prior/)
# d2min = 20, d2max = 400, stepd2 = 5, # define optimization set for d2
# adj = "both", # choose both adjustment methods
# lambdamin = 0.7, lambdamax = 1, steplambda = 0.05, # optimization set for multiplicative adjustment
# alphaCImin = 0.1, alphaCImax = 0.5, stepalphaCI = 0.05, # optimization set for additive adjustment
# hrgomin = 0.7, hrgomax = 0.9, stephrgo = 0.01, # define optimization set for HRgo
# alpha = 0.025, beta = 0.1, xi2 = 0.7, xi3 = 0.7, # drug development planning parameters
# c2 = 0.75, c3 = 1, c02 = 100, c03 = 150, # define fixed and variable costs
# K = Inf, N = Inf, S = -Inf, # set constraints
# steps1 = 1, stepm1 = 0.95, stepl1 = 0.85, # define boundary for effect size categories
# b1 = 1000, b2 = 2000, b3 = 3000, # define expected benefits
# fixed = TRUE, # choose if effects are fixed or random
# num_cl = 1)
## ----eval=TRUE, include=FALSE-------------------------------------------------
# res <- optimal_bias(w = 0.3, # define parameters for prior
# hr1 = 0.75, hr2 = 0.8, id1 = 210, id2 = 420, # (https://web.imbi.uni-heidelberg.de/prior/)
# d2min = 20, d2max = 400, stepd2 = 5, # define optimization set for d2
# adj = "both", # choose both adjustment methods
# lambdamin = 0.7, lambdamax = 1, steplambda = 0.05, # optimization set for multiplicative adjustment
# alphaCImin = 0.1, alphaCImax = 0.5, stepalphaCI = 0.05, # optimization set for additive adjustment
# hrgomin = 0.7, hrgomax = 0.9, stephrgo = 0.01, # define optimization set for HRgo
# alpha = 0.025, beta = 0.1, xi2 = 0.7, xi3 = 0.7, # drug development planning parameters
# c2 = 0.75, c3 = 1, c02 = 100, c03 = 150, # define fixed and variable costs
# K = Inf, N = Inf, S = -Inf, # set constraints
# steps1 = 1, stepm1 = 0.95, stepl1 = 0.85, # define boundary for effect size categories
# b1 = 1000, b2 = 2000, b3 = 3000, # define expected benefits
# fixed = TRUE, # choose if effects are fixed or random
# num_cl = 1)
# saveRDS(res, file="optimal_bias_adjustment.RDS")
## ----eval=TRUE, include=FALSE-------------------------------------------------
res <- readRDS(file="optimal_bias_adjustment.RDS")
## -----------------------------------------------------------------------------
res
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.