Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(drugdevelopR)
## ----eval=TRUE, include=FALSE-------------------------------------------------
res <- readRDS(file="optimal_normal_basic_setting.RDS")
## -----------------------------------------------------------------------------
res
## ----eval = FALSE-------------------------------------------------------------
# resK <- optimal_normal(Delta1 = 0.625, fixed = TRUE, # treatment effect
# n2min = 20, n2max = 400, # sample size region
# stepn2 = 4, # sample size step size
# kappamin = 0.02, kappamax = 0.2, # threshold region
# stepkappa = 0.02, # threshold step size
# c2 = 0.675, c3 = 0.72, # maximal total trial costs
# c02 = 15, c03 = 20, # maximal per-patient costs
# b1 = 3000, b2 = 8000, b3 = 10000, # gains for patients
# alpha = 0.025, # one-sided significance level
# beta = 0.1, # 1 - power
# Delta2 = NULL, w = NULL, in1 = NULL, in2 = NULL,
# a = NULL,b = NULL, # setting all unneeded parameters to NULL
# K = 200 # cost constraint
# )
## ----eval=TRUE, include=FALSE-------------------------------------------------
# Comment this chunk after running it once
# resK <- optimal_normal(Delta1 = 0.625, fixed = TRUE, # treatment effect
# n2min = 20, n2max = 400, # sample size region
# stepn2 = 4, # sample size step size
# kappamin = 0.02, kappamax = 0.2, # threshold region
# stepkappa = 0.02, # threshold step size
# c2 = 0.675, c3 = 0.72, # maximal total trial costs
# c02 = 15, c03 = 20, # maximal per-patient costs
# b1 = 3000, b2 = 8000, b3 = 10000, # gains for patients
# alpha = 0.025, # significance level
# beta = 0.1, # 1 - power
# Delta2 = NULL, w = NULL, in1 = NULL, in2 = NULL,
# a = NULL,b = NULL,
# K = 200) # setting all unneeded parameters to NULL
# saveRDS(resK, file="optimal_normal_cost_constraint.RDS")
## ----eval=TRUE, include=FALSE-------------------------------------------------
resK <- readRDS(file="optimal_normal_cost_constraint.RDS")
## -----------------------------------------------------------------------------
resK
## ----eval = FALSE-------------------------------------------------------------
# resN <- optimal_normal(Delta1 = 0.625, fixed = TRUE, # treatment effect
# n2min = 20, n2max = 400, # sample size region
# stepn2 = 4, # sample size step size
# kappamin = 0.02, kappamax = 0.2, # threshold region
# stepkappa = 0.02, # threshold step size
# c2 = 0.675, c3 = 0.72, # maximal total trial costs
# c02 = 15, c03 = 20, # maximal per-patient costs
# b1 = 3000, b2 = 8000, b3 = 10000, # gains for patients
# alpha = 0.025, # significance level
# beta = 0.1, # 1 - power
# Delta2 = NULL, w = NULL, in1 = NULL, in2 = NULL,
# a = NULL,b = NULL, # setting all unneeded parameters to NULL
# N = 200 # sample size constraint
# )
## ----eval=TRUE, include=FALSE-------------------------------------------------
# Comment this chunk after running it once
# resN <- optimal_normal(Delta1 = 0.625, fixed = TRUE, # treatment effect
# n2min = 20, n2max = 400, # sample size region
# stepn2 = 4, # sample size step size
# kappamin = 0.02, kappamax = 0.2, # threshold region
# stepkappa = 0.02, # threshold step size
# c2 = 0.675, c3 = 0.72, # maximal total trial costs
# c02 = 15, c03 = 20, # maximal per-patient costs
# b1 = 3000, b2 = 8000, b3 = 10000, # gains for patients
# alpha = 0.025, # significance level
# beta = 0.1, # 1 - power
# Delta2 = NULL, w = NULL, in1 = NULL, in2 = NULL,
# a = NULL,b = NULL,
# N = 200)
# saveRDS(resN, file="optimal_normal_sample_size_constraint.RDS")
## ----eval=TRUE, include=FALSE-------------------------------------------------
resN <- readRDS(file="optimal_normal_sample_size_constraint.RDS")
## -----------------------------------------------------------------------------
resN
## ----eval = FALSE-------------------------------------------------------------
# resS <- optimal_normal(Delta1 = 0.625, fixed = TRUE, # treatment effect
# n2min = 20, n2max = 400, # sample size region
# stepn2 = 4, # sample size step size
# kappamin = 0.02, kappamax = 0.2, # threshold region
# stepkappa = 0.02, # threshold step size
# c2 = 0.675, c3 = 0.72, # maximal total trial costs
# c02 = 15, c03 = 20, # maximal per-patient costs
# b1 = 3000, b2 = 8000, b3 = 10000, # gains for patients
# alpha = 0.025, # significance level
# beta = 0.1, # 1 - power
# Delta2 = NULL, w = NULL, in1 = NULL, in2 = NULL,
# a = NULL,b = NULL, # setting all unneeded parameters to NULL
# S = 0.87 #minimum success probability
# )
## ----eval=TRUE, include=FALSE-------------------------------------------------
# Comment this chunk after running it once
# resS <- optimal_normal(Delta1 = 0.625, fixed = TRUE, # treatment effect
# n2min = 20, n2max = 400, # sample size region
# stepn2 = 4, # sample size step size
# kappamin = 0.02, kappamax = 0.2, # threshold region
# stepkappa = 0.02, # threshold step size
# c2 = 0.675, c3 = 0.72, # maximal total trial costs
# c02 = 15, c03 = 20, # maximal per-patient costs
# b1 = 3000, b2 = 8000, b3 = 10000, # gains for patients
# alpha = 0.025, # significance level
# beta = 0.1, # 1 - power
# Delta2 = NULL, w = NULL, in1 = NULL, in2 = NULL,
# a = NULL,b = NULL,
# S = 0.87) # setting all unneeded parameters to NULL
# saveRDS(resS, file="optimal_normal_probability_constraint.RDS")
## ----eval=TRUE, include=FALSE-------------------------------------------------
resS <- readRDS(file="optimal_normal_probability_constraint.RDS")
## -----------------------------------------------------------------------------
resS
## ----eval = FALSE-------------------------------------------------------------
# res <- optimal_normal(Delta1 = 0.625, fixed = TRUE, # treatment effect
# n2min = 20, n2max = 400, # sample size region
# stepn2 = 4, # sample size step size
# kappamin = 0.02, kappamax = 0.2, # threshold region
# stepkappa = 0.02, # threshold step size
# c2 = 0.675, c3 = 0.72, # maximal total trial costs
# c02 = 15, c03 = 20, # maximal per-patient costs
# b1 = 3000, b2 = 8000, b3 = 10000, # gains for patients
# alpha = 0.025, # significance level
# beta = 0.1, # 1 - power
# Delta2 = NULL, w = NULL, in1 = NULL, in2 = NULL,
# a = NULL,b = NULL, # setting all unneeded parameters to NULL
# steps1 = 0.1, stepm1 = 0.6, stepl1 = 1 # step sizes for effect size categories
# )
## ----eval = FALSE-------------------------------------------------------------
# resII <- optimal_normal(Delta1 = 0.625, fixed = TRUE, # treatment effect
# n2min = 20, n2max = 400, # sample size region
# stepn2 = 4, # sample size step size
# kappamin = 0.02, kappamax = 0.2, # threshold region
# stepkappa = 0.02, # threshold step size
# c2 = 0.675, c3 = 0.72, # maximal total trial costs
# c02 = 15, c03 = 20, # maximal per-patient costs
# b1 = 3000, b2 = 8000, b3 = 10000, # gains for patients
# alpha = 0.025, # significance level
# beta = 0.1, # 1 - power
# Delta2 = NULL, w = NULL, in1 = NULL, in2 = NULL,
# a = NULL,b = NULL, # setting all unneeded parameters to NULL
# skipII = TRUE #skipping phase II
# )
## ----eval=TRUE, include=FALSE-------------------------------------------------
# Comment this chunk after running it once
# resII <- optimal_normal(Delta1 = 0.625, fixed = TRUE, # treatment effect
# n2min = 20, n2max = 400, # sample size region
# stepn2 = 4, # sample size step size
# kappamin = 0.02, kappamax = 0.2, # threshold region
# stepkappa = 0.02, # threshold step size
# c2 = 0.675, c3 = 0.72, # maximal total trial costs
# c02 = 15, c03 = 20, # maximal per-patient costs
# b1 = 3000, b2 = 8000, b3 = 10000, # gains for patients
# alpha = 0.025, # significance level
# beta = 0.1, # 1 - power
# Delta2 = NULL, w = NULL, in1 = NULL, in2 = NULL,
# a = NULL,b = NULL,
# skipII = TRUE)
# saveRDS(resII, file="optimal_normal_skipII.RDS")
## ----eval=TRUE, include=FALSE-------------------------------------------------
resII <- readRDS(file="optimal_normal_skipII.RDS")
## -----------------------------------------------------------------------------
resII
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.